Interleukin-17 (IL-17) is a proinflammatory cytokine produced by T cells. The involvement of IL-17 in human diseases has been suspected because of its detection in sera from asthmatic patients and synovial fluids from arthritic patients. In this study, we generated IL-17-deficient mice and investigated the role of IL-17 in various disease models. We found that contact, delayed-type, and airway hypersensitivity responses, as well as T-dependent antibody production, were significantly reduced in the mutant mice, while IL-17 deficiency of donor T cells did not affect acute graft-versus-host reaction. The results suggest that impaired responses were caused by the defects of allergen-specific T cell activation. Our findings indicate that IL-17 plays an important role in activating T cells in allergen-specific T cell-mediated immune responses.
Cytokines play key roles in spontaneous CD4 + T cell-mediated chronic autoimmune arthritis in SKG mice, a new model of rheumatoid arthritis. Genetic deficiency in IL-6 completely suppressed the development of arthritis in SKG mice, irrespective of the persistence of circulating rheumatoid factor. Either IL-1 or TNF-α deficiency retarded the onset of arthritis and substantially reduced its incidence and severity. IL-10 deficiency, on the other hand, exacerbated disease, whereas IL-4 or IFN-γ deficiency did not alter the disease course. Synovial fluid of arthritic SKG mice contained high amounts of IL-6, TNF-α, and IL-1, in accord with active transcription of these cytokine genes in the afflicted joints. Notably, immunohistochemistry revealed that distinct subsets of synovial cells produced different cytokines in the inflamed synovium: the superficial synovial lining cells mainly produced IL-1 and TNF-α, whereas scattered subsynovial cells produced IL-6. Thus, IL-6, IL-1, TNF-α, and IL-10 play distinct roles in the development of SKG arthritis; arthritogenic CD4 + T cells are not required to skew to either Th1 or Th2; and the appearance of rheumatoid factor is independent of joint inflammation. The results also indicate that targeting not only each cytokine but also each cell population secreting distinct cytokines could be an effective treatment of rheumatoid arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.