Optical methods using phosphorescence quenching by oxygen are suitable for sequential monitoring and non-invasive measurements for oxygen concentration (OC) imaging within cells. Phosphorescence intensity measurement is widely used with phosphorescent dyes. These dyes are ubiquitously but heterogeneously distributed inside the whole cell. The distribution of phosphorescent dye is a major disadvantage in phosphorescence intensity measurement. We established OC imaging system for a single cell using phosphorescence lifetime and a laser scanning confocal microscope. This system had improved spatial resolution and reduced the measurement time with the high repetition rate of the laser. By the combination of ubiquitously distributed phosphorescent dye with this lifetime imaging microscope, we can visualize the OC inside the whole cell and spheroid. This system uses reversible phosphorescence quenching by oxygen, so it can measure successive OC changes from normoxia to anoxia. Lower regions of OC inside the cell colocalized with mitochondria. The time-dependent OC change in an insulin-producing cell line MIN6 by the glucose stimulation was successfully visualized. Assessing the detailed distribution and dynamics of OC inside cells achieved by the presented system will be useful to understanding a physiological and pathological oxygen metabolism.
Background5-Aminolevulinic acid (ALA) is a precursor of heme that is fundamentally important in aerobic energy metabolism. Among the enzymes involved in aerobic energy metabolism, cytochrome c oxidase (COX) is crucial. In this study, the effect of ALA on cytochrome c oxidase activity was measured.Findingsc57BL/6N species of mice were administered ALA orally for 15 weeks. After ALA administration, mice were sacrificed and livers were obtained. COX activity in mitochondria from ALA-administered mouse livers was 1.5-fold higher than that in mitochondria from PBS-administered mouse livers (P < 0.05). Furthermore, ATP levels in ALA-administered mouse livers were much higher than those in PBS-administered mouse livers. These data suggest that oral administration of ALA promotes aerobic energy metabolism, especially COX activity.ConclusionsThis is the first report of a drug that functions in aerobic energy metabolism directly. Since COX activity is decreased in various diseases and aging, the pharmacological effects of ALA will be expanding.
We investigated transition-metal-loaded
silicon nanoparticles for
the photocatalytic reduction of nitroarene derivatives in the presence
of formic acid under visible light irradiation. Formic acid assumes
the role of both a hydrogen source and a sacrificial reagent for the
introduction of electrons into the generated holes of semiconductors.
As such, in the presence of formic acid, photocatalytic reactions
smoothly proceed under mild conditions without gaseous hydrogen. In
particular, palladium-loaded silicon (Pd/Si) was the most suitable
catalyst for the conversion of nitrobenzene to aniline, compared to
Pt/Si, Ru/Si, and Pd/C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.