We investigate the effect of early chemical freeze-out on radial flow, elliptic flow and HBT radii by using a fully three dimensional hydrodynamic model. When we take account of the early chemical freeze-out, the space-time evolution of temperature in the hadron phase is considerably different from the conventional model in which chemical equilibrium is always assumed. As a result, we find that radial and elliptic flows are suppressed and that the lifetime and the spatial size of the fluid are reduced. We analyze the p t spectrum, the differential elliptic flow, and the HBT radii at the RHIC energy by using hydrodynamics with chemically non-equilibrium equation of state.
Higher generations of poly(propylene imine) dendrimers functionalized with aliphatic chains form large micrometer-sized spherical objects in aqueous solution below pH 8. These spheres are giant vesicles with a multilaminar onion-like structure. The size distribution and the structure of the vesicles depend on the pH of the solution and the endgroups at the periphery of the dendrimer. The vesicles containing azobenzene units (2 and 3) fluoresce with a maximum at λ max ) 600 nm. This emission can be attributed to the dense and ordered arrangement of the azobenzene chromophores in the bilayer structure. Laser irradiation of a small area of giant vesicles of 2 or 3 with 1064 and/or 420 nm light leads to changes in the morphology of the vesicles. Infrared light induces a rearrangement, whereas the azobenzene units isomerize under the influence of 420 nm light. Both irradiations lead to a change in refractive index in the illuminated area. Irradiation using 420 nm light is accompanied by an increase in the emission intensity. In aqueous solutions at pH 1, the increase in fluorescence intensity is concurrent with a blue shift of the emission maximum to 540 nm. This blue shift is not observed when the experiment is performed in Milli Q water (pH 5.5). The enhanced fluorescence can be attributed to reorganization of the chromophores within the giant vesicle. The increase in emission proves that the giant vesicle is a kinetically formed system that reaches a thermodynamically more relaxed state after light-induced isomerization.
The differences in the fluorescence behavior of a polyphenylene dendrimer with eight peryleneimides chromophores (1) and a single hexaphenylperyleneimide chromophore have been investigated at a single‐molecule level through the combination of ultrasensitive fluorescence detection and microscopy.
Diese Arbeit wurde von der FWO, dem flämischen Ministerium für Bildung (GOA/1/96), der Europäischen Union (TMR-Projekte ¹Sisitomasª und ¹Marie Curieª), der Volkswagen-Stiftung und der DWTC (Belgien; IUAP-IV-11) gefördert. J.H. dankt der FWO für ein Graduiertenstipendium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.