Minocycline is commonly used to inhibit microglial activation. It is widely accepted that activated microglia exert dual functions, that is, pro-inflammatory (M1) and anti-inflammatory (M2) functions. The in vivo status of activated microglia is probably on a continuum between these two extreme states. However, the mechanisms regulating microglial polarity remain elusive. Here, we addressed this question focusing on minocycline. We used SOD1G93A mice as a model, which exhibit the motor neuron-specific neurodegenerative disease, amyotrophic lateral sclerosis. Administration of minocycline attenuated the induction of the expression of M1 microglia markers during the progressive phase, whereas it did not affect the transient enhancement of expression of M2 microglia markers during the early pathogenesis phase. This selective inhibitory effect was confirmed using primary cultured microglia stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4, which induced M1 or M2 polarization, respectively. Furthermore, minocycline inhibited the upregulation of NF-κB in the LPS-stimulated primary cultured microglia and in the spinal cord of SOD1G93A mice. On the other hand, IL-4 did not induce upregulation of NF-κB. This study indicates that minocycline selectively inhibits the microglia polarization to a proinflammatory state, and provides a basis for understanding pathogeneses of many diseases accompanied by microglial activation.
Lymphocyte homing is mediated by specific interactions between L-selectin on lymphocytes and sulfated carbohydrates restricted to high endothelial venules in lymph nodes. Here we generated mice deficient in both N-acetylglucosamine-6-O-sulfotransferase 1 (GlcNAc6ST-1) and GlcNAc6ST-2 and found that mutant mice had approximately 75% less homing of lymphocytes to the peripheral lymph nodes than did wild-type mice. Consequently, these mice had lower contact hypersensitivity responses than those of wild-type mice. Carbohydrate structural analysis showed that 6-sulfo sialyl Lewis X, a dominant ligand for L-selectin, was almost completely absent from the high endothelial venules of these mutant mice, whereas the amount of unsulfated sialyl Lewis X was much greater. These results demonstrate the essential function of GlcNAc6ST-1 and GlcNAc6ST-2 in L-selectin ligand biosynthesis in high endothelial venules and their importance in immune surveillance.
Sulf-2 is an endosulfatase with activity against glucosamine-6-sulfate modifications within subregions of intact heparin. The enzyme has the potential to modify the sulfation status of extracellular heparan sulfate proteoglycan (HSPG) glycosaminoglycan chains and thereby to regulate interactions with HSPG-binding proteins. In the present investigation, data mining from published studies was employed to establish Sulf-2 mRNA upregulation in human breast cancer. We further found that cultured breast carcinoma cells expressed Sulf-2 mRNA and released enzymatically active proteins into conditioned medium. In two mouse models of mammary carcinoma, Sulf-2 mRNA was upregulated in comparison to its expression in normal mammary gland. Although mRNA was present in normal tissues, Sulf-2 protein was undetectable; it was, however, detected in some premalignant lesions and in tumors. The protein was localized to the epithelial cells of the tumors. In support of the possible mechanistic relevance of Sulf-2 upregulation in tumors, purified recombinant Sulf-2 promoted angiogenesis in the chick chorioallantoic membrane assay.
The interaction of L-selectin on lymphocytes with sulfated ligands on high endothelial venules leads to rolling and is critical for recruitment of lymphocytes into peripheral lymph nodes. Peripheral node addressin represents a class of L-selectin ligands recognized by the function-blocking monoclonal antibody MECA-79. Its epitope overlaps with sialyl 6-sulfo Lewis X, an L-selectin recognition determinant. Here, mice lacking two N-acetylglucosamine-6-O-sulfotransferases (GlcNAc6ST-1 and GlcNAc6ST-2) demonstrated elimination of both peripheral node addressin and sialyl 6-sulfo Lewis X in high endothelial venules, considerably reduced lymphocyte homing to peripheral lymph nodes and reduced sticking of lymphocytes along high endothelial venules. Our results establish an essential function for the sulfotransferases in L-selectin ligand synthesis and may have relevance for therapy of inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.