Purpose: More brain tumor markers are required for prognosis and targeted therapy. We have identified and validated promising molecular therapeutic glioblastoma multiforme (GBM) targets: human transmembrane glycoprotein nonmetastatic melanoma protein B (GPNMB wt ) and a splice variant form (GPNMB sv , a 12-amino-acid in-frame insertion in the extracellular domain). Experimental Design: We have done genetic and immunohistochemical evaluation of human GBM to determine incidence, distribution, and pattern of localization of GPNMB antigens in brain tumors as well as survival analyses. Results: Quantitative real-time PCR on 50 newly diagnosed GBM patient tumor samples indicated that 35 of 50 GBMs (70%) were positive for GPNMB wt+sv transcripts and 15 of 50 GBMs (30%) were positive for GPNMB sv transcripts. Normal brain samples expressed little or no GPNMB mRNA.We have isolated and characterized an anti-GPNMB polyclonal rabbit antiserum (2640) and two IgG2b monoclonal antibodies (mAb; G11 and U2). The binding affinity constants of the mAbs ranged from 0.27 Â 10 8 to 9.6 Â 10 8 M À1 measured by surface plasmon resonance with immobilized GPNMB, or 1.7 to 2.1 Â 10 8 M À1 by Scatchard analyses with cellexpressed GPNMB. Immunohistochemical analysis detected GPNMB in a membranous and cytoplasmic pattern in 52 of 79 GBMs (66%), with focal perivascular reactivity in f27%. Quantitative flow cytometric analysis revealed GPNMB cell surface molecular density of 1.1 Â 10 4 to 7.8 Â 10 4 molecules per cell, levels sufficient for mAb targeting. Increased GPNMB mRNA levels correlated with elevated GPNMB protein expression in GBM biopsy samples. Univariate and multivariate analyses correlated expression of GPNMB with survival of 39 GBM patients using RNA expression and immunohistochemical data, establishing that patients with relatively high mRNA GPNMB transcript levels (wt+sv and wt), >3-fold over normal brain, as well as positive immunohistochemistry, have a significantly higher risk of death (hazard ratios, 3.0, 2.2, and 2.8, respectively). Conclusions: Increased mRNA and protein levels in GBM patient biopsy samples correlated with higher survival risk; as a detectable surface membrane protein in glioma cells, the data indicate that GPNMB is a potentially useful tumor-associated antigen and prognostic predictor for therapeutic approaches with malignant gliomas or any malignant tumor that expresses GPNMB.Glioblastoma multiforme (GBM) accounts for f50% of all primary brain tumors in adults and is usually rapidly fatal (1). Despite recent advances in surgery and radiotherapy and the development of chemotherapeutic reagents, the clinical outcome for most GBM patients is unsatisfactory. Although a recent study showed, for the first time, a meaningful survival benefit associated with chemotherapy using an innovative, temozolomide-based chemoradiation approach (2), the median progression-free survival among patients treated with this regimen was only 7.9 months, whereas the overall survival was only 14.6 months (2). Thus, effecti...
The flt-1 gene encodes a transmembrane tyrosine kinase, Flt-1, a receptor for vascular endothelial growth factor. The expression of flt-1 gene is restricted to endothelial cells in vivo. To understand the molecular mechanism underlying endothelial-specific expression of this gene, we studied the functional significance of transcriptional motifs in the 200-base pair region of the human flt-1 gene promoter, which has been identified to confer cell type specificity. By point mutation analysis using chloramphenicol acetyltransferase plasmids in 293E1 cells, which express significant levels of flt-1 mRNA, we found that an Ets motif, E4, at ؊54 to ؊51 and a cAMP response element (CRE) at ؊83 to ؊76 are involved in the transcriptional regulation of this gene. Disruption of either this CRE or E4 within the promoter sequence of 90 base pairs resulted in a decrease in chloramphenicol acetyltransferase activity of 90%, indicating that co-existence of both of CRE and Ets motif E4 is necessary for transcription of the flt-1 gene. Co-transfection of an expression vector containing c-ets-1, c-ets-2, or c-erg cDNA with this 90-base pair sequence yielded a 5-8-fold elevation of chloramphenicol acetyltransferase activity, further supporting the idea that Ets family protein(s) participates in the regulation of the flt-1 gene. Gel shift assays using nuclear extracts of 293E1 and endothelial cells demonstrated the existence of protein factor(s) that specifically binds to CRE and Ets motif E4, respectively. Taken together, our results strongly suggest cooperation of a CRE and an Ets motif for the function of the flt-1 gene promoter.
BackgroundGlioblastoma multiforme (GBM) is refractory to conventional therapies. To overcome the problem of heterogeneity, more brain tumor markers are required for prognosis and targeted therapy. We have identified and validated a promising molecular therapeutic target that is expressed by GBM: human multidrug-resistance protein 3 (MRP3).MethodsWe investigated MRP3 by genetic and immunohistochemical (IHC) analysis of human gliomas to determine the incidence, distribution, and localization of MRP3 antigens in GBM and their potential correlation with survival. To determine MRP3 mRNA transcript and protein expression levels, we performed quantitative RT-PCR, raising MRP3-specific antibodies, and IHC analysis with biopsies of newly diagnosed GBM patients. We used univariate and multivariate analyses to assess the correlation of RNA expression and IHC of MRP3 with patient survival, with and without adjustment for age, extent of resection, and KPS.ResultsReal-time PCR results from 67 GBM biopsies indicated that 59/67 (88%) samples highly expressed MRP3 mRNA transcripts, in contrast with minimal expression in normal brain samples. Rabbit polyvalent and murine monoclonal antibodies generated against an extracellular span of MRP3 protein demonstrated reactivity with defined MRP3-expressing cell lines and GBM patient biopsies by Western blotting and FACS analyses, the latter establishing cell surface MRP3 protein expression. IHC evaluation of 46 GBM biopsy samples with anti-MRP3 IgG revealed MRP3 in a primarily membranous and cytoplasmic pattern in 42 (91%) of the 46 samples. Relative RNA expression was a strong predictor of survival for newly diagnosed GBM patients. Hazard of death for GBM patients with high levels of MRP3 RNA expression was 2.71 (95% CI: 1.54-4.80) times that of patients with low/moderate levels (p = 0.002).ConclusionsHuman GBMs overexpress MRP3 at both mRNA and protein levels, and elevated MRP3 mRNA levels in GBM biopsy samples correlated with a higher risk of death. These data suggest that the tumor-associated antigen MRP3 has potential use for prognosis and as a target for malignant glioma immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.