SUMMARYWe investigate an automatic and dynamic parameter tuning of a statistical method for detecting anomalies in network traffic (this tuning is referred to as parameter learning) towards real-time detection. The main idea behind the dynamic tuning is to predict an appropriate parameter for upcoming traffic by considering the detection results of past t traces of traffic. The t is referred to as the learning period, and we discuss in particular the appropriate value of t. This automatic tuning scheme is applied to parameter setting of an anomaly detection method based on Sketch and the multi-scale gamma model, which is an unsupervised method and does not need predefined data. We analyze the tuning scheme with real traffic traces measured on a trans-Pacific link over 9 years (15 min from 14:00 Japan Standard Time every day, and 24 consecutive hours for some dates on the same link). The detection results with parameter prediction are compared to those with ideal parameters that maximize the detection performance for upcoming traffic. We also analyze predictability of the ideal parameter considering the past changes in it. The main findings of this work are as follows: (1) the ideal parameter fluctuates day by day; (2) parameter learning with a longer t is affected by significant events included in the period, and the appropriate t is about three traces (days) for everyday 15 min traces and around 1.5 h for 24 h traces; (3) the degradation in detection performance caused by introducing parameter learning is 17% with t = 3 for everyday 15 min traces; (4) the changes in the ideal parameter have no periodic correlation, and can be modeled as a random process followed by a normal distribution. We show that one cannot consistently use a fixed parameter in statistics-based algorithms to detect anomalies in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.