Next-generation biomedical devices will need to be self-powered and conformable to human skin or other tissue. Such devices would enable the accurate and continuous detection of physiological signals without the need for an external power supply or bulky connecting wires. Self-powering functionality could be provided by flexible photovoltaics that can adhere to moveable and complex three-dimensional biological tissues and skin. Ultra-flexible organic power sources that can be wrapped around an object have proven mechanical and thermal stability in long-term operation, making them potentially useful in human-compatible electronics. However, the integration of these power sources with functional electric devices including sensors has not yet been demonstrated because of their unstable output power under mechanical deformation and angular change. Also, it will be necessary to minimize high-temperature and energy-intensive processes when fabricating an integrated power source and sensor, because such processes can damage the active material of the functional device and deform the few-micrometre-thick polymeric substrates. Here we realize self-powered ultra-flexible electronic devices that can measure biometric signals with very high signal-to-noise ratios when applied to skin or other tissue. We integrated organic electrochemical transistors used as sensors with organic photovoltaic power sources on a one-micrometre-thick ultra-flexible substrate. A high-throughput room-temperature moulding process was used to form nano-grating morphologies (with a periodicity of 760 nanometres) on the charge transporting layers. This substantially increased the efficiency of the organophotovoltaics, giving a high power-conversion efficiency that reached 10.5 per cent and resulted in a high power-per-weight value of 11.46 watts per gram. The organic electrochemical transistors exhibited a transconductance of 0.8 millisiemens and fast responsivity above one kilohertz under physiological conditions, which resulted in a maximum signal-to-noise ratio of 40.02 decibels for cardiac signal detection. Our findings offer a general platform for next-generation self-powered electronics.
Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-mm-thick parylene-C films with high field-effect mobility (1.0 cm 2 V À 1 s À 1 ) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m À 2 ) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.
Extensive efforts have been devoted during the last decade to organic solar cell research that has led to remarkable progress and achieved power conversion efficiencies (PCEs) in excess of 10%. Among the existing flexible organic solar cells, ultrathin organic solar cells with a total thickness <10 µm have important advantages, including good mechanical bending stabilities and good conformability. These advantages have led to power generation solutions for wearable electronics. In this essay, the progress of flexible and ultrathin organic solar cells, and the future research directions pertaining to these cells are discussed based on the potential applications of textile‐compatible solar cells. Both process engineering and development of the material of ultrathin substrate films have improved the PCE of ultrathin organic solar cells, which in turn have led to the small PCE difference between flexible organic solar cells with substrate thickness >10 µm and ultrathin organic solar cells with substrate thickness ≤10 µm. Key technologies for the further improvement of PCE of flexible/ultrathin organic solar cells are discussed. Strategies to improve the stability and some important aspects, which determine the mechanical robustness of flexible organic solar cells, are also presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.