Human chromosome 14q32.2 carries a cluster of imprinted genes including paternally expressed genes (PEGs) such as DLK1 and RTL1 and maternally expressed genes (MEGs) such as MEG3 (also known as GTL2), RTL1as (RTL1 antisense) and MEG8 (refs. 1,2), together with the intergenic differentially methylated region (IG-DMR) and the MEG3-DMR. Consistent with this, paternal and maternal uniparental disomy for chromosome 14 (upd(14)pat and upd(14)mat) cause distinct phenotypes. We studied eight individuals (cases 1-8) with a upd(14)pat-like phenotype and three individuals (cases 9-11) with a upd(14)mat-like phenotype in the absence of upd(14) and identified various deletions and epimutations affecting the imprinted region. The results, together with recent mouse data, imply that the IG-DMR has an important cis-acting regulatory function on the maternally inherited chromosome and that excessive RTL1 expression and decreased DLK1 and RTL1 expression are relevant to upd(14)pat-like and upd(14)mat-like phenotypes, respectively.
CHD6 is an ATP-dependent chromatin-remodeling enzyme, which has been implicated as a crucial component for maintaining and regulating chromatin structure. CHD6 belongs to the largest subfamily, subfamily III (CHD6-9), of the chromodomain helicase DNA (CHD-binding protein) family of enzymes (CHD1-9). Here we report on a female patient with a balanced translocation t(4;20)(q33;q12) presenting with severe mental retardation and brachydactyly of the toes. We identified the translocation breakpoint in intron 27 of CHD6 at 20q12, while the 4q33 breakpoint was intergenic. Northern blot analysis demonstrated the CHD6 mRNA in the patient's lymphoblastoid cells was decreased to ∼50% of the control cells. To investigate the cellular mechanism of diseases resulting from decreased CHD subfamily III proteins, we knocked down CHD6 or CHD7 by RNA interference in HeLa cells and analyzed chromosome alignment. The both CHD6- and CHD7-knockdown cells showed increased frequency of misaligned chromosomes on metaphase plates. Moreover, an elevated frequency of aneuploidy, the major cause of miscarriages and mental retardation, was observed in patients with CHD6 and CHD7 haploinsufficiency. These results suggest that CHD6 and CHD7 play important roles in chromatin assembly during mitosis and that mitotic delay and/or impaired cell proliferation may be associated with pathogenesis of the diseases caused by CHD6 or CHD7 mutations.
We report herein a case of Brachmann-de Lange syndrome complicated with congenital diaphragmatic hernia in which a NIPBL gene mutation was identified. A female infant born at 37 weeks of gestation died 134 min after delivery, even though endotracheal intubation and resuscitation were performed immediately after the scheduled caesarean operation. We diagnosed the infant with Brachmann-de Lange syndrome from her physical characteristics. An abnormal peak at the 29th exon in the translation area of the NIPBL gene was detected using denaturing high-performance liquid chromatography. In addition, a mutation of cytosine to thymine (nonsense mutation) at the 5524th base was identified using the direct sequence method. This variation was likely the cause of the syndrome.
CHARGE syndrome is an autosomal dominant congenital anomaly syndrome, and the causative gene is CHD7. We report a patient with a CHD7 mutation who presented with juvenile muscular atrophy of a unilateral upper extremity, a presumably heterogeneous condition that is also known as Hirayama disease. This association has not been previously described. Weakness and atrophy of the hands should be carefully examined in patients with CHARGE syndrome, since Hirayama disease might be a possible complication in adolescent patients with this syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.