Sigatoka leaf diseases are a major constraint to banana production. A survey was conducted in Tanzania and Uganda to assess the distribution of Pseudocercospora species and severity of Sigatoka leaf diseases. Pseudocercospora species were identified using species‐specific primers. Sigatoka‐like leaf diseases were observed in all farms and on all cultivars, but disease severity varied significantly (P < 0.001) between countries, districts/regions within countries, altitudinal ranges and banana cultivars. In all regions except Kilimanjaro, P. fijiensis, the causal agent of black Sigatoka, was the only pathogen associated with Sigatoka disease. Mycosphaerella musae was associated with Sigatoka‐like symptoms in Kilimanjaro region. Black Sigatoka disease was more severe in Uganda, with a mean disease severity index (DSI) of 37.5%, than in Tanzania (DSI = 19.9%). In Uganda, black Sigatoka disease was equally severe in Luwero district (mean DSI = 40.4%) and Mbarara district (mean DSI = 37.9%). In Tanzania, black Sigatoka was most severe in Kagera region (mean DSI = 29.2%) and least in Mbeya region (mean DSI = 11.5%). Pseudocercospora fijiensis, the most devastating sigatoka pathogen, was detected at altitudes of up to 1877 m a.s.l. This range expansion of P. fijiensis, previously confined to altitudes lower than 1350 m a.s.l. in East Africa, is of concern, especially for smallholder banana farmers growing the susceptible East African Highland bananas (EAHB). Among the banana varieties sampled, the EAHB, FHIA hybrids and Mchare were the most susceptible. Here, the loss of resistance in Yangambi KM5, a banana variety previously resistant to P. fijiensis, is reported for the first time.
Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc) race 1, is a major disease of bananas in East Africa. Triploid East African Highland (Matooke) bananas are resistant to Foc race 1, but the response of diploid (Mchare and Muraru) bananas to the fungus is largely unknown. A breeding project was initiated in 2014 to increase crop yield and improve disease and pest resistance of diploid and triploid East African Highland bananas. In this study, eight Mchare cultivars were evaluated for resistance to Foc race 1 in the field in Arusha, Tanzania. In addition, the same eight Mchare cultivars, as well as eight Muraru cultivars, 27 Mchare hybrids, 60 Matooke hybrids and 19 NARITA hybrids were also screened in pot trials. The diploid Mchare and Muraru cultivars were susceptible to Foc race 1, whereas the responses of Mchare, NARITAs and Matooke hybrids ranged from susceptible to resistant. The Mchare and Matooke hybrids resistant to Foc race 1 can potentially replace susceptible cultivars in production areas severely affected by the fungus. Some newly bred Matooke hybrids became susceptible following conventional breeding, suggesting that new hybrids need to be screened for resistance to all Foc variants.
Growing bananas resistant to Pseudocercospora fijiensis, the cause of black Sigatoka, is the preferred disease control strategy for resource-poor farmers. Banana breeding programs in east Africa have developed 27 Matooke hybrids (commonly known as NARITAs) with higher yields than local landraces. To assess the response of NARITA hybrids to P. fijiensis, 22 hybrids were evaluated under natural field conditions in four locations—Kawanda and Mbarara in Uganda, and Maruku, and Mitarula in Tanzania—between 2016 and 2018 for three crop cycles. Black Sigatoka was visually assessed and the area under the disease progress curve calculated for each plant over time. Significant differences (p < 0.001) were observed between genotypes, environments, and their interaction. The highest contributor to black Sigatoka severity (39.1%) was the environment, followed by the genotype (37.5%) and the genotype Χ environment interaction (GEI) (23.4%). NARITA 2, 7, 14, 21 and 23 were resistant and the most stable hybrids across locations. If other attributes such as the yield and taste are acceptable to end-users, these hybrids can be released to farmers in the region to replace highly susceptible landraces. Mitarula was identified as an ideal site for evaluating banana against black Sigatoka and should be used as a representative location to minimize costs of disease evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.