We compared Mycobacterium tuberculosis sputum culture recovery and contamination rates between Lowenstein-Jensen medium (LJ) containing the following decontaminants and LJ alone: (i) PANTA (n ؍ 299), (ii) Selectatab-MB (n ؍ 299), and (iii) penicillin G (n ؍ 234). The contamination rate for LJ alone was approximately 31%, versus 5.0% for PANTA-containing, 2% for Selectatab-containing, and 9% for penicillin-containing media (P < 0.001). M. tuberculosis isolation rates were 9.8%, 17%, 18%, and 12% for standard LJ, PANTA, Selectatab, and penicillin cultures, respectively.
Uganda is among the 22 countries in the world with a high burden of tuberculosis. The southwestern region of the country has consistently registered a high TB/HIV incidence rate. This study is aimed at characterizing the Mycobacterium tuberculosis complex (MTBC) genotypic diversity in southwestern Uganda. A total of 283 sputum samples from patients with pulmonary tuberculosis were genotyped using specific single nucleotide polymorphism markers for lineages 3 and 4. Most of the patients were males with a mean age of 34. The lineage 4 Ugandan family was found to be the most dominant strains accounting for 59.7% of all cases followed by lineage 3 at 15.2%. The lineage 4 non-Ugandan family accounted for 14.5% of all cases while 4.2% showed amplification for both lineage 4 and lineage 3. Eighteen samples (6.4%) of the strains remained unclassified since they could not be matched to any lineage based on the genotyping technique used. This study demonstrates that a wide diversity of strains is causing pulmonary tuberculosis in this region with those belonging to the lineage 4 Ugandan family being more predominant. However, to confirm this, further studies using more discriminative genotyping methods are necessary.
Microscopic diagnosis of malaria using Giemsa-stained blood smears is the standard of care in resource-limited settings. These smears represent a potential source of DNA for PCR testing to confirm infections or for epidemiological studies of archived samples. Therefore, we assessed the use of DNA extracts from stained blood smears for the detection of species using real-time PCR. We extracted DNA from archived blood smears and corresponding red blood cell pellets collected from asymptomatic children in southwestern Uganda in 2010. We then performed real-time PCR followed by high-resolution melting (HRM) to identify species, and we compared our results to those of microscopy. We analyzed a total of 367 blood smears and corresponding red blood cell pellets, including 185 smears (50.4%) that were positive by microscopy. Compared to microscopy, PCR-HRM analysis of smear DNA had a sensitivity of 93.0% (95% confidence interval [CI], 88.2 to 96.2%) and a specificity of 96.7% (95% CI, 93.0 to 98.8%), and PCR-HRM analysis of pellet DNA had a sensitivity of 100.0% (95% CI, 98.0 to 100.0%) and a specificity of 94.0% (95% CI, 89.4 to 96.9%). Identification of positive PCR-HRM results to the species level revealed (92.0%), (5.6%), and (2.4%). PCR-HRM analysis of DNA extracts from Giemsa-stained thick blood smears or corresponding blood pellets had high sensitivity and specificity for malaria diagnosis, compared to microscopy. Therefore, blood smears can provide an adequate source of DNA for confirmation of species infections and can be used for retrospective genetic studies.
Background: Klebsiella pneumoniae is one of the most frequent opportunistic pathogens causing a range of infections and being resistant for beta-lactamases (ESBL) and Carbapenemases. Aim: The aim of the present study was to determine the antimicrobial resistance patterns and molecular characterization establishing the phenotypes and genotypes associated with drug resistance, an antibiogram of genotypically positive isolates for resistance of Klebsiella pneumoniae in clinical isolates at MRRH. Materials and Methods: A laboratory-based descriptive cross-sectional study that was conducted from September 2018 to May 2019 at MRRH. Klebsiella pneumoniae was identified by cultural and biochemical methods. Antibiotic sensitivity test was performed by modified Kirby-Bauer disc diffusion technique. ESBL production in Klebsiella pneumoniae was tested by double-disc synergy test, Carbapenemase production by MHT, Boronic Acid or EDTA test using Meropenem phenotypically and both resistance confirmed genotypically by Multiplex PCR. Results: Out of 1055 clinical isolates, 298 (28.2%) were found positive for Klebsiella.spp, 175 isolates were subcultured among which 22 (12.57%) were K. pneumoniae based on API 20E. Overall Sensitivity patterns of these Klebsiella pneumoniae isolates to Ceftriaxone, (Amoxicillin/Clavulanate), Gentamicin, Cefepime, Ciprofloxacin, Cefoxitin, Nitrofurantoin, Cefuroxime, piperacillin/tazobactam, Meropenem, Ceftazidime and cefotaxime were 72.7%,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.