Face images with masks have a major effect on the identification and authentication of people with masks covering key facial features such as noses and mouths. In this paper, we propose to use periocular region and skin tone for authenticating users with masked faces. We first extract the periocular region of faces with masks, then detect the skin tone for each face. We then train models using machine learning algorithms Random Forest, XGBoost, and Decision Trees using skin tone information and perform classification on two datasets. Experiment results show these models had good performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.