Schists from the Appalachian Orogen in south-east Vermont have undergone multiple phases of garnet growth. These phases can be distinguished by the trend and relative timing of foliation inflexion or intersection axes (FIAs) of foliations preserved as inclusion trails in garnet porphyroblasts. The relative timing of different generations of FIAs is determined from samples containing porphyroblasts with two or three differently trending FIAs developed outwards from core to rim (multi-FIA porphyroblasts). Schists from south-east Vermont show a consistent pattern of relative clockwise rotation of FIA trends from oldest to youngest. Four populations or sets of FIAs can be distinguished on the basis of their relative timings and trends. From oldest to youngest, the four sets have modal peaks trending SW-NE, W-E, NNW-SSE and SSW-NNE. These peaks show that each of the four FIA sets has a statistically consistent trend at all scales across a 35×125 km area containing numerous mesoscopic and macroscopic folds. The FIAs of Set 4 are defined by inclusion trails that are continuous with matrix foliations, have trends subparallel to most folds and are inferred to have developed contemporaneously with these structures. Conversely, Sets 1 to 3 are oblique to and pre-date most matrix foliations and folds. All four FIA sets occur in Siluro-Devonian rocks and must have formed in the Acadian Orogeny. The lack of statistically significant differences in the distribution of FIA trends across the study area and their consistent relative timings in multi-FIA porphyroblasts, despite a complex regional deformation history involving numerous phases of folding at all scales, suggest the porphyroblasts have not rotated relative to one another. The change in FIA trend with time resulted from rotation of the kinematic reference frame of bulk flow, possibly as a consequence of the reorganization of lithospheric plates responsible for Acadian orogenesis.Recognition of distinct generations of FIAs provides a means of distinguishing different phases of porphyroblast growth. Four periods of garnet porphyroblast growth occurred in the schists of south-east Vermont. This growth was heterogeneously distributed on the cm2-m2 scale. No single porphyroblast records all stages of growth, and adjacent samples from the same or dissimilar rock types commonly contain porphyroblasts that preserve different sequences of growth. Factors that may have been responsible for switching porphyroblast growth on and off at this scale include: (i) subtle differences in bulk chemical composition; (ii) oscillating levels of heat, owing to the buffering effect of endothermic garnetforming reactions; (iii) channelized infiltration of fluids with localized fluid buffering of bulk composition; and (iv) cyclic controls on the rates of diffusion and material transport of reactants, either by channelized fluid flow or by a changing pattern of microfracturing during foliation development.Consistency in FIA trend and relative timing provide a new method for potentially distinguish...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.