Background Identification of novel molecular target(s) is important for designing newer mechanistically driven approaches for the treatment of prostate cancer (PCa), which is one of the main causes of morbidity and mortality in men. In this study, we determined the role of polo‐like kinase 4 (PLK4), which regulates centriole duplication and centrosome amplification (CA), in PCa. Materials and Methods Employing human PCa tissue microarrays, we assessed the prevalence of CA, correlated with Gleason score, and estimated major causes of CA in PCa (cell doubling vs. centriole overduplication) by staining for mother/mature centrioles. We also assessed PLK4 expression and correlated it with CA in human PCa tissues and cell lines. Further, we determined the effects of PLK4 inhibition in human PCa cells. Results Compared to benign prostate, human PCa demonstrated significantly higher CA, which was also positively correlated with the Gleason score. Further, most cases of CA were found to arise by centriole overduplication rather than cell doubling events (e.g., cytokinesis failure) in PCa. In addition, PLK4 was overexpressed in human PCa cell lines and tumors. Moreover, PLK4 inhibitors CFI‐400945 and centrinone‐B inhibited cell growth, viability, and colony formation of both androgen‐responsive and androgen‐independent PCa cell lines. PLK4 inhibition also induced cell cycle arrest and senescence in human PCa cells. Conclusions CA is prevalent in PCa and arises predominantly by centriole overduplication as opposed to cell doubling events. Loss of centrioles is cellular stress that can promote senescence and suggests that PLK4 inhibition may be a viable therapeutic strategy in PCa.
Melanoma is one of the most aggressive, potentially fatal forms of skin cancer and has been shown to be associated with solar ultraviolet radiation‐dependent initiation and progression. Despite remarkable recent advances with targeted and immune therapeutics, lasting and recurrence‐free survival remain significant concerns. Therefore, additional novel mechanism‐based approaches are needed for effective melanoma management. The sirtuin SIRT6 appears to have a pro‐proliferative function in melanocytic cells. In this study, we determined the effects of genetic manipulation of SIRT6 in human melanoma cells, in vitro and in vivo. Our data demonstrated that CRISPR/Cas9‐mediated knockout (KO) of SIRT6 in A375 melanoma cells resulted in a significant (1) decrease in growth, viability and clonogenic survival and (2) induction of G1‐phase cell cycle arrest. Further, employing a RT2 Profiler PCR array containing 84 key transformation and tumorigenesis genes, we found that SIRT6 KO resulted in modulation of genes involved in angiogenesis, apoptosis, cellular senescence, epithelial‐to‐mesenchymal transition, hypoxia signaling and telomere maintenance. Finally, we found significantly decreased tumorigenicity of SIRT6 KO A375 cells in athymic nude mice. Our data provide strong evidence that SIRT6 promotes melanoma cell survival, both in vitro and in vivo, and could be exploited as a target for melanoma management.
Background: Corpora amylacea (CAM), in benign prostatic acini, contain acutephase proteins. Do CAM coincide with carcinoma?Methods: Within 270 biopsies, 83 prostatectomies, and 33 transurethral resections (TURs), CAM absence was designated CAM 0; corpora in less than 5% of benign acini: CAM 1; in 5% to 25%: CAM 2; in more than 25%: CAM 3. CAM were compared against carcinoma presence, clinicopathologic findings, and grade groups (GG) 1 to 2 vs 3 to 5.The frequency of CAM according to anatomic zone was counted. A pilot study was conducted using paired initial benign and repeat biopsies (33 benign, 24 carcinoma).Results: A total of 68.9% of biopsies, 96.4% of prostatectomies, and 66.7% of TURs disclosed CAM. CAM ≥1 was common at an older age (P = .019). In biopsies, 204 cases (75%) had carcinoma; and CAM of 2 to 3 (compared to 0-1) were recorded in 25.0% of carcinomas but only 7.4% of benign biopsies (P = .005; odds ratio [OR] = 5.1). CAM correlated with high percent Gleason pattern 3, low GG (P = .035), and chronic inflammation (CI). CI correlated inversely with carcinoma (P = .003). CAM disclosed no association with race, body mass index, serum prostate specific antigen (PSA), acute inflammation (in biopsies), atrophy, or carcinoma volume.With CAM 1, the odds of GG 3 to 5 carcinoma, by comparison to CAM 0, decreased more than 2× (OR = 0.48; P = .032), with CAM 2, more than 3× (OR = 0.33; P = .005), and with CAM 3, almost 3× (OR = 0.39, P = .086). For men aged less than 65, carcinoma predictive model was: Score = (2 × age) + (5 × PSA) − (20 × degree of CAM); using our data, area under the ROC curve was 78.17%. When the transition zone was involved by cancer, it showed more CAM than in cases where it was uninvolved (P = .012); otherwise zonal distributions were similar.In the pilot study, CAM ≥1 predicted carcinoma on repeat biopsy (P < .05; OR = 8), as did CAM 2 to 3 (P < .0001; OR = 30). CI was not significant, and CAM retained significance after adjusting for CI. Conclusion: CAM correlate with carcinoma. Whether abundant CAM in benign biopsies adds value amidst high clinical suspicion, warrants further study. K E Y W O R D S corpora amylacea, inflammation, peripheral zone, prediction of cancer, prostate cancer, transition zone 688 | PALANGMONTHIP ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.