Abstract. Isotope filtering methods are instrumental in biomolecular nuclear magnetic resonance (NMR) studies as they isolate signals of chemical moieties of interest within complex molecular assemblies. However, isotope filters suppress undesired signals of isotopically enriched molecules through scalar couplings, and variations in scalar couplings lead to imperfect suppressions, as occurs for aliphatic and aromatic moieties in proteins. Here, we show that signals that have escaped traditional filters can be attenuated with mitigated sensitivity losses for the desired signals of unlabeled moieties. The method uses a shared evolution between the detection and preceding preparation period to establish non-observable antiphase coherences and eliminates them through composite pulse decoupling. We demonstrate the method by isolating signals of an unlabeled post-translational modification tethered to an isotopically enriched protein.
Structural biology is the foundation for deriving molecular mechanisms, where snapshots of macromolecules and binding partners inform on mutations that test or modify function. However, frequently, the impact of mutations violates the underpinnings of structural models, and mechanisms become cryptic. This conundrum applies to multidomain enzymatic systems called nonribosomal peptide synthetases (NRPSs), which assemble simple substrates into complex metabolites often with pharmaceutical properties. Engineering NRPSs can generate new pharmaceuticals, but a dynamic domain organization challenges rational design. Using nuclear magnetic resonance (NMR), we determined the solution structure of a 52 kDa cyclization domain and demonstrate that global intra-domain dynamics enable sensing of substrates tethered to partner domains and draw an allosteric response encompassing the enzyme′s buried active site and two binding sites 40 Å apart. We show that a point-site mutation that impedes the domain dynamics globally hampers the allosteric response. We demonstrate this mechanism through NMR experiments that provide atomic-level read-outs of allosteric responses during biochemical transformations in situ. Our results establish global structural dynamics as sensors of molecular events that can remodel domain interactions and illustrate the need for integrating structural dynamics explicitly when deriving molecular mechanisms through mutagenesis and structural biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.