BACKGROUND The mutations that have been implicated in pulmonary fibrosis account for only a small proportion of the population risk. METHODS Using a genomewide linkage scan, we detected linkage between idiopathic interstitial pneumonia and a 3.4-Mb region of chromosome 11p15 in 82 families. We then evaluated genetic variation in this region in gel-forming mucin genes expressed in the lung among 83 subjects with familial interstitial pneumonia, 492 subjects with idiopathic pulmonary fibrosis, and 322 controls. MUC5B expression was assessed in lung tissue. RESULTS Linkage and fine mapping were used to identify a region of interest on the p-terminus of chromosome 11 that included gel-forming mucin genes. The minor-allele of the single-nucleotide polymorphism (SNP) rs35705950, located 3 kb upstream of the MUC5B transcription start site, was present at a frequency of 34% among subjects with familial interstitial pneumonia, 38% among subjects with idiopathic pulmonary fibrosis, and 9% among controls (allelic association with familial interstitial pneumonia, P = 1.2×10−15; allelic association with idiopathic pulmonary fibrosis, P = 2.5×10−37). The odds ratios for disease among subjects who were heterozygous and those who were homozygous for the minor allele of this SNP were 6.8 (95% confidence interval [CI], 3.9 to 12.0) and 20.8 (95% CI, 3.8 to 113.7), respectively, for familial interstitial pneumonia and 9.0 (95% CI, 6.2 to 13.1) and 21.8 (95% CI, 5.1 to 93.5), respectively, for idiopathic pulmonary fibrosis. MUC5B expression in the lung was 14.1 times as high in subjects who had idiopathic pulmonary fibrosis as in those who did not (P<0.001). The variant allele of rs35705950 was associated with up-regulation in MUC5B expression in the lung in unaffected subjects (expression was 37.4 times as high as in unaffected subjects homozygous for the wild-type allele, P<0.001). MUC5B protein was expressed in lesions of idiopathic pulmonary fibrosis. CONCLUSIONS A common polymorphism in the promoter of MUC5B is associated with familial interstitial pneumonia and idiopathic pulmonary fibrosis. Our findings suggest that dys-regulated MUC5B expression in the lung may be involved in the pathogenesis of pulmonary fibrosis. (Funded by the National Heart, Lung, and Blood Institute and others.)
Idiopathic pulmonary fibrosis (IPF) is a fatal and incurable form of interstitial lung disease in which persistent injury results in scar tissue formation. As fibrosis thickens, the lung tissue loses the ability to facilitate gas exchange and provide cells with needed oxygen. Currently, IPF has few treatment options and no effective therapies, aside from lung transplant. Here we present a series of studies utilizing lung spheroid cell-secretome (LSC-Sec) and exosomes (LSC-Exo) by inhalation to treat different models of lung injury and fibrosis. Analysis reveals that LSC-Sec and LSC-Exo treatments could attenuate and resolve bleomycin-and silica-induced fibrosis by reestablishing normal alveolar structure and decreasing both collagen accumulation and myofibroblast proliferation. Additionally, LSC-Sec and LSC-Exo exhibit superior therapeutic benefits than their counterparts derived from mesenchymal stem cells in some measures. We showed that an inhalation treatment of secretome and exosome exhibited therapeutic potential for lung regeneration in two experimental models of pulmonary fibrosis.
Hypersecretion of airway mucin characterizes numerous respiratory diseases. Although diverse pathological stimuli can provoke exocytotic release of mucin from secretory cells of the airway epithelium, mechanisms involved remain obscure. This report describes a new paradigm for the intracellular signaling mechanism regulating airway mucin secretion. Direct evidence is provided that the myristoylated alanine-rich C kinase substrate (MARCKS) is a central regulatory molecule linking secretagogue stimulation at the cell surface to mucin granule release by differentiated normal human bronchial epithelial cells in vitro. Down-regulation of MARCKS expression or disruption of MARCKS function in these cells inhibits the secretory response to subsequent stimulation. The intracellular mechanism controlling this secretory process involves cooperative action of two separate protein kinases, protein kinase C and cGMP-dependent protein kinase. Upon stimulation, activated protein kinase C phosphorylates MARCKS, causing translocation of MARCKS from the plasma membrane to the cytoplasm, where it is then dephosphorylated by a protein phosphatase 2A that is activated by cGMP-dependent protein kinase, and associates with both actin and myosin. Dephosphorylated cytoplasmic MARCKS would also be free to interact with mucin granule membranes and thus could link granules to the contractile cytoskeleton, mediating their movement to the cell periphery and subsequent exocytosis. These findings suggest several novel intracellular targets for pharmacological intervention in disorders involving aberrant secretion of respiratory mucin and may relate to other lesions involving exocytosis of membrane-bound granules in various cells and tissues.
Mucus hypersecretion is a crucial feature of pulmonary diseases such as asthma, chronic bronchitis and cystic fibrosis. Despite much research, there is still no effective therapy for this condition. Recently, we showed that the myristoylated, alanine-rich C-kinase substrate (MARCKS) protein is required for mucus secretion by human bronchial epithelial cells in culture. Having synthesized a peptide corresponding to the N-terminal domain of MARCKS, we now show that the intratracheal instillation of this peptide blocks mucus hypersecretion in a mouse model of asthma. A missense peptide with the same amino acid composition has no effect. Based on quantitative histochemical analysis of the mouse airways, the peptide seems to act by blocking mucus release from goblet cells, possibly by inhibiting the attachment of MARCKS to membranes of intracellular mucin granules. These results support a pivotal role for MARCKS protein, specifically its N-terminal region, in modulating this secretory process in mammalian airways. Intratracheal administration of this MARCKS-related peptide could therapeutically reduce mucus secretion in the airways of human patients with asthma, chronic bronchitis and cystic fibrosis.
A simple, disposable, biphasic cultivation chamber has been developed for respiratory tract epithelial cells. This chamber, the Whitcutt chamber, contains a movable, transparent, permeable gelatin membrane that can be employed either submerged in the culture medium, thereby feeding the cells by the traditional immersion method, or raised to the surface of the culture medium, to bring the apical surfaces of the cells into contact with air and provide nutrients only from below (basal feeding). The effects of biphasic cultivation on the growth and differentiation of respiratory tract epithelial cells from different sources have been studied in Whitcutt chambers. Primary hamster tracheal epithelial (HTE) cells grown to confluence with basal feeding developed a ciliated columnar morphology, with differentiated features (cilia and mucous granules) located in the apical region of the epithelial layer. These cells secreted mucinlike molecules from the apical surface (i.e. the surface in contact with air). Although the apical localization of differentiation features was greater, mucous cell differentiation achieved by basal feeding was quantitatively not greater than that achieved by continuous immersion feeding. Similarly, basal feeding did not alter the degree of epithelial cell differentiation in cultures derived from rat, rabbit, and monkey tracheas or from human bronchial and nasal tissues. In contrast, the differentiation of guinea pig tracheal epithelial cells in culture was significantly influenced by the feeding method employed. When fed basally, guinea pig tracheal epithelial cell cultures expressed various mucociliary functions with resemblance to mucociliary layers in vivo, whereas constantly immersed cultures seemed stratified and squamous. These results suggest that, at least for guinea pigs, the combination of feeding methods provided by the Whitcutt chamber can be used to achieve differentiated cultures of tracheal epithelial cells with a polarity of differentiation that is similar to that observed in intact airways in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.