SUMMARY
Aromatase-expressing neuroendocrine neurons in the vertebrate male brain synthesize estradiol from circulating testosterone. This locally produced estradiol controls neural circuits underlying courtship vocalization, mating, aggression, and territory marking in male mice. How aromatase-expressing neuronal populations control these diverse estrogen-dependent male behaviors is poorly understood, and the function, if any, of aromatase-expressing neurons in females is unclear. Using targeted genetic approaches, we show that aromatase-expressing neurons within the male posterodorsal medial amygdala (MeApd) regulate components of aggression but not other estrogen-dependent male-typical behaviors. Remarkably, aromatase-expressing MeApd neurons in females are specifically required for components of maternal aggression, which we show is distinct from intermale aggression in pattern and execution. Thus, aromatase-expressing MeApd neurons control distinct forms of aggression in the two sexes. Moreover, our findings indicate that complex social behaviors are separable in a modular manner at the level of genetically identified neuronal populations.
SUMMARY
How environmental and physiological signals interact to influence neural circuits underlying developmentally programmed social interactions such as male territorial aggression is poorly understood. We have tested the influence of sensory cues, social context, and sex hormones on progesterone receptor (PR) expressing neurons in the ventromedial hypothalamus (VMH) that are critical for male territorial aggression. We find that these neurons can drive aggressive displays in solitary males independent of pheromonal input, gonadal hormones, opponents, or social context. By contrast, these neurons cannot elicit aggression in socially housed males that intrude in another male’s territory unless their pheromone-sensing is disabled. This modulation of aggression cannot be accounted for by linear integration of environmental and physiological signals. Together, our studies suggest that fundamentally non-linear computations enable social context to exert a dominant influence on developmentally hard-wired hypothalamus-mediated male territorial aggression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.