Farm animal genomics is of interest to a wide audience of researchers because of the utility derived from understanding how genomics and proteomics function in various organisms. Applications such as xenotransplantation, increased livestock productivity, bioengineering new materials, products and even fabrics are several reasons for thriving farm animal genome activity. Currently mined in rapidly growing data warehouses, completed genomes of chicken, fish and cows are available but are largely stored in decentralized data repositories. In this paper, we provide an informatics primer on farm animal bioinformatics and genome project resources which drive attention to the most recent advances in the field. We hope to provide individuals in biotechnology and in the farming industry with information on resources and updates concerning farm animal genome projects.
Introduction
In order to develop a model for investigating the genes that contribute to retinal degeneration, we examined the early graded photochemical stress response in the adult zebrafish (Danio rerio) retina and investigated the role of an NMDA inhibitor, thiokynurenate.
Methods
Following intravitreal injection of rose bengal (6 or 12 mg/mL), light (37×103 or 83×103 lx) was directed onto the central retina with and without 400 nM thiokynurenate. Histologic and electron microscopic analysis was performed at 2 and 4 h and gene expression analysis was carried out at 2, 4 and 6 h.
Results
Light and electron microscopy demonstrated a graded photochemical response in photoreceptor, nuclear, and ganglion cell layer thickness. Increased vacuolation of the inner plexiform layer was also observed. The inhibitor produced a distinct lesion pattern. Cellular stress genes were elevated in low and high lesions, while some homeobox gene expression was reduced with thiokynurenate.
Discussion
The phenotypic and genetic changes observed from this model can serve as a basis for understanding the pathology of retinal oxidative and cellular stress. These changes may aid our understanding of aging and macular degeneration.
We describe the synthesis of a series of biodegradable oligo-R-hydroxy ester cross-linkers and evaluate their impact on the degradation kinetics and macromolecule diffusion from a hydrogel network. By changing the steric and electronic environment at the site of degradation in the cross-linker, we were able to modulate the degradation, swelling kinetics, and corresponding release profiles of macromolecules from poly(HPMA) hydrogel networks under physiologically relevant conditions. As the steric hindrance and electron demand at the site of hydrolysis for three different cross-linkers was increased, the total time for the hydrogel network to completely dissolve increased from 2 to over 30 days while incubated in pH 7 buffer. As the number of hydrolyzable sites and the electron demand at the side of hydrolysis decreased, the time to completely dissolve decreased from weeks to several days. Increasing the cross-linking density for one of the degradable cross-linkers (1.5% to 3.0% feed ratio) increased the degradation time by several weeks. Burst release was absent for high molecular weight solutes because the release rate depended on controlled degradation of the polymer network and an increase in average network mesh size. The synthetically adaptable cross-linkers described herein offer a new approach for controlling the rate and extent of release from biodegradable hydrogel networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.