We consider polynomials that are orthogonal on [−1, 1] with respect to a modified Jacobi weight (1 − x) α (1 + x) β h(x), with α, β > −1 and h real analytic and stricly positive on [−1, 1]. We obtain full asymptotic expansions for the monic and orthonormal polynomials outside the interval [−1, 1], for the recurrence coefficients and for the leading coefficients of the orthonormal polynomials. We also deduce asymptotic behavior for the Hankel determinants and for the monic orthogonal polynomials on the interval [−1, 1]. For the asymptotic analysis we use the steepest descent technique for Riemann-Hilbert problems developed by Deift and Zhou, and applied to orthogonal polynomials on the real line by Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou. In the steepest descent method we will use the Szegő function associated with the weight and for the local analysis around the endpoints ±1 we use Bessel functions of appropriate order, whereas Deift et al. use Airy functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.