Are first-generation (F 1 ) hybrids typically intermediate for all traits that differentiate their parents? Or are they similar to one parent for most traits, or even mismatched for divergent traits? Although the phenotype of otherwise viable and fertile hybrids determines their fate, little is known about the general patterns, predictors, and consequences of phenotype expression in hybrids. To address this empirical gap, we compiled data from nearly 200 studies where traits were measured in a common environment for two parent populations and F 1 hybrids. We find that individual traits are typically halfway between the parental midpoint and one parental value (i.e., hybrid trait values are typically 0.25 or 0.75 if parents' values are 0 & 1). When considering pairs of traits together, a hybrid's multivariate phenotype tends to resemble one parent (pairwise parent-bias) about 50 % more than the other while also exhibiting a similar magnitude of trait mismatch due to different traits having dominance in conflicting directions. We detect no phylogenetic signal nor an effect of parental genetic distance on dominance or mismatch. Using data from an experimental field planting of recombinant hybrid sunflowers-where there is among-individual variation in dominance and mismatch due to segregation of divergent alleles-we illustrate that pairwise parent-bias improves fitness while mismatch reduces fitness. Importantly, the effect of mismatch on fitness was stronger than that of pairwise parent-bias. In sum, our study has three major conclusions. First, hybrids between ecologically divergent natural populations are typically not phenotypically intermediate but rather exhibit substantial mismatch while also resembling one parent more than the other. Second, dominance and mismatch are likely determined by population-specific processes rather than general rules. Finally, selection against hybrids likely results from both selection against somewhat intermediate phenotypes and against mismatched trait combinations.
Responses of high-altitude graminoids and soil fungi to 20 years of experimental warming Abstract. High-elevation ecosystems are expected to be particularly sensitive to climate warming because cold temperatures constrain biological processes. Deeper understanding of the consequences of climate change will come from studies that consider not only the direct effects of temperature on individual species, but also the indirect effects of altered species interactions. Here we show that 20 years of experimental warming has changed the species composition of graminoid (grass and sedge) assemblages in a subalpine meadow of the Rocky Mountains, USA, by increasing the frequency of sedges and reducing the frequency of grasses. Because sedges typically have weak interactions with mycorrhizal fungi relative to grasses, lowered abundances of arbuscular mycorrhizal (AM) fungi or other root-inhabiting fungi could underlie warming-induced shifts in plant species composition. However, warming increased root colonization by AM fungi for two grass species, possibly because AM fungi can enhance plant water uptake when soils are dried by experimental warming. Warming had no effect on AM fungal colonization of three other graminoids. Increased AM fungal colonization of the dominant shrub Artemisia tridentata provided further grounds for rejecting the hypothesis that reduced AM fungi caused the shift from grasses to sedges. Non-AM fungi (including dark septate endophytes) also showed general increases with warming. Our results demonstrate that lumping grasses and sedges when characterizing plant community responses can mask significant shifts in the responses of primary producers, and their symbiotic fungi, to climate change.
Although fruit color polymorphisms are a widespread phenomenon, the role of frugivores in their maintenance is unknown. Selection would require that frugivores interact differentially with fruit color morphs to alter their relative fitnesses, but such a pattern has yet to be demonstrated. In a 3-yr field study, the interactions of ants and birds with Acacia ligulata, an Australian shrub with a red/yellow/ orange aril color polymorphism, were examined. Bird species fell into three feeding guilds: seed dispersers, seed predators, and aril thieves; ant species acted either as seed dispersers or aril thieves. While there was no evidence of morph bias in ants, in some years birds fed more frequently on the yellow and orange morphs. Based on patterns of seedling survival and juvenile recruitment in seed deposition sites, bird seed dispersers increased the fitness of yellow and orange morphs (relative to red) in some populations, but decreased their relative fitness in others. Bird seed predators uniformly reduced relative fitness of yellow and orange morphs, while bird aril thieves had unknown effects. Altogether, consumer biases produced spatiotemporal variability in the relative fitness of A. ligulata color morphs, a pattern qualitatively consistent with maintenance of the polymorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.