BackgroundA central challenge of biology is to map and understand gene regulation on a genome-wide scale. For any given genome, only a small fraction of the regulatory elements embedded in the DNA sequence have been characterized, and there is great interest in developing computational methods to systematically map all these elements and understand their relationships. Such computational efforts, however, are significantly hindered by the overwhelming size of non-coding regions and the statistical variability and complex spatial organizations of regulatory elements and interactions. Genome-wide catalogs of regulatory elements for all model species simply do not yet exist.ResultsThe MotifMap system uses databases of transcription factor binding motifs, refined genome alignments, and a comparative genomic statistical approach to provide comprehensive maps of candidate regulatory elements encoded in the genomes of model species. The system is used to derive new genome-wide maps for yeast, fly, worm, mouse, and human. The human map contains 519,108 sites for 570 matrices with a False Discovery Rate of 0.1 or less. The new maps are assessed in several ways, for instance using high-throughput experimental ChIP-seq data and AUC statistics, providing strong evidence for their accuracy and coverage. The maps can be usefully integrated with many other kinds of omic data and are available at http://motifmap.igb.uci.edu/. ConclusionsMotifMap and its integration with other data provide a foundation for analyzing gene regulation on a genome-wide scale, and for automatically generating regulatory pathways and hypotheses. The power of this approach is demonstrated and discussed using the P53 apoptotic pathway and the Gli hedgehog pathways as examples.
Motivation:The performance of classifiers is often assessed using Receiver Operating Characteristic ROC [or (AC) accumulation curve or enrichment curve] curves and the corresponding areas under the curves (AUCs). However, in many fundamental problems ranging from information retrieval to drug discovery, only the very top of the ranked list of predictions is of any interest and ROCs and AUCs are not very useful. New metrics, visualizations and optimization tools are needed to address this 'early retrieval' problem. Results: To address the early retrieval problem, we develop the general concentrated ROC (CROC) framework. In this framework, any relevant portion of the ROC (or AC) curve is magnified smoothly by an appropriate continuous transformation of the coordinates with a corresponding magnification factor. Appropriate families of magnification functions confined to the unit square are derived and their properties are analyzed together with the resulting CROC curves. The area under the CROC curve (AUC[CROC]) can be used to assess early retrieval. The general framework is demonstrated on a drug discovery problem and used to discriminate more accurately the early retrieval performance of five different predictors. From this framework, we propose a novel metric and visualization-the CROC(exp), an exponential transform of the ROC curve-as an alternative to other methods. The CROC(exp) provides a principled, flexible and effective way for measuring and visualizing early retrieval performance with excellent statistical power. Corresponding methods for optimizing early retrieval are also described in the Appendix. Availability: Datasets are publicly available. Python code and command-line utilities implementing CROC curves and metrics are available at
SummaryThe rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.
The antagonistic actions of Polycomb and Trithorax are responsible for proper cell fate determination in mammalian tissues. In the epidermis, a self-renewing epithelium, previous work has shown that release from Polycomb repression only partially explains differentiation gene activation. We now show that Trithorax is also a key regulator of epidermal differentiation, not only through activation of genes repressed by Polycomb in progenitor cells, but also through activation of genes independent of regulation by Polycomb. The differentiation associated transcription factor GRHL3/GET1 recruits the ubiquitously expressed Trithorax complex to a subset of differentiation genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.