The effects of aging on the immune system are widespread and extend from hematopoietic stem cells and lymphoid progenitors in the bone marrow and thymus to mature lymphocytes in secondary lymphoid organs. These changes combine to result in a diminution of immune responsiveness in the elderly. This review aims to provide an overview of age-related changes in lymphocyte development and function and discusses current controversies in the field of aging research.
The effects of aging on the immune system are manifest at multiple levels that include reduced production of B and T cells in bone marrow and thymus and diminished function of mature lymphocytes in secondary lymphoid tissues. As a result, elderly individuals do not respond to immune challenge as robustly as the young. An important goal of aging research is to define the cellular changes that occur in the immune system and the molecular events that underlie them. Considerable progress has been made in this regard, and this information has provided the rationale for clinical trials to rejuvenate the aging immune system.
The B-1 subpopulation of B lymphocytes differs phenotypically and functionally from conventional B-2 B cells. B-1 B cells are proposed to derive from a distinct progenitor, but such a population has not been isolated. Here we identify and characterize a B-1 B cell progenitor whose numbers peaked in fetal bone marrow but were less abundant in postnatal bone marrow. These Lin(-)CD45R(lo-neg)CD19(+) cells responded to thymic stromal lymphopoietin and 'preferentially' reconstituted functional sIgM(hi)CD11b(+)CD5(lo-neg) B-1 B cells, but not sIgM(+)CD11b(-) B-2 B cells, in vivo. These data indicate that the CD45R(lo-neg)CD19(+) population includes B-1 B cell-specified progenitors and support models proposing distinct developmental pathways for B-1 B cells.
Prolactin (PRL) has been implicated in numerous physiological and developmental processes. The mouse PRL gene was disrupted by homologous recombination. The mutation caused infertility in female mice, but did not prevent female mice from manifesting spontaneous maternal behaviors. PRL-deficient males were fertile and produced offspring with normal Mendelian gender and genotype ratios when they were mated with heterozygous females. Mammary glands of mutant female mice developed a normal ductal tree, but the ducts failed to develop lobular decorations, which is a characteristic of the normal virgin adult mammary gland. The potential effect of PRL gene disruption on antigenindependent primary hematopoiesis was assessed. The results of this analysis indicated that myelopoiesis and primary lymphopoiesis were unaltered in the mutant mice. Consistent with these observations in PRL mutant mice, PRL failed to correct the bone marrow B cell deficiency of Snell dwarf mice. These results argue that PRL does not play any indispensable role in primary lymphocyte development and homeostasis, or in myeloid differentiation. The PRL -/-mouse model provides a new research tool with which to resolve a variety of questions regarding the involvement of both endocrine and paracrine sources of PRL in reproduction, lactogenesis, tumorigenesis and immunoregulation.
Ageing is accompanied by a decline in the function of the immune system, which increases susceptibility to infections and can decrease the quality of life. The ability to rejuvenate the ageing immune system would therefore be beneficial for elderly individuals and would decrease health-care costs for society. But is the immune system ever too old to become young again? We review here the promise of various approaches to rejuvenate the function of the immune system in the rapidly growing ageing population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.