Microfabricated fluidic devices have generated considerable interest over the past ten years due to the fact that sample preparation, injection, separation, derivatization, and detection can be integrated into one miniaturized device. This review reports progress in the development of microfabricated analytical systems based on microchip capillary electrophoresis (CE) with electrochemical (EC) detection. Electrochemical detection has several advantages for use with microchip electrophoresis systems, for example, ease of miniaturization, sensitivity, and selectivity. In this review, the basic components necessary for microchip CEEC are described, including several examples of different detector configurations. Lastly, details of the application of this technique to the determination of catechols and phenols, amino acids, peptides, carbohydrates, nitroaromatics, polymerase chain reaction (PCR) products, organophosphates, and hydrazines are described.
The use of capillary electrophoresis (CE) with on-capillary Cu(II) complexation for the determination of angiotensin and its metabolites is described. The resulting copper-peptide complexes can be detected using either UV or electrochemical (EC) detection. Optimal reaction and separation conditions for the angiotensin peptides were first determined using CE with UV detection. With UV detection, the limit of detection (signal-to noise ratio S/N = 3) for native angiotensin II was 18 microM, while the limit of detection (LOD) obtained for the copper-angiotensin II complex is 2 microM. CE with EC detection was then evaluated, yielding significantly lower LODs--2 microM for native angiotensin II and 200 nM for the copper-angiotensin II complex. The addition of copper to the run buffer improved the separation and sensitivity for both CE-UV and CE-EC detection. The method was demonstrated by monitoring the conversion of angiotensin I to angiotensin II in plasma via angiotensin-converting enzyme (ACE) and subsequent inhibition of ACE by captopril.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.