Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in disease brain are limited. Here, we integrate genotype and RNA-sequencing in brain samples from 1695 subjects with autism, schizophrenia, bipolar disorder and controls. Over 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. co-expression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon response modules defining novel neural-immune mechanisms. We prioritize disease loci likely mediated by cis-effects on brain expression via transcriptome-wide association analysis. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development.
-Despite its functional importance in various fundamental bioprocesses, the studies of N6-methyladenosine (m6A) in the heart are lacking. Here we show that, fat mass and obesity-associated (FTO), an m6A demethylase, plays a critical role in cardiac contractile function during homeostasis, remodeling and regeneration. -We used clinical human samples, preclinical pig and mouse models and primary cardiomyocyte cell cultures to study the functional role of m6A and FTO in the heart and in cardiomyocytes. We modulated expression of FTO using AAV9 (in vivo), adenovirus (both in vivo and in vitro) and siRNAs (in vitro) to study its function in regulating cardiomyocyte m6A, calcium dynamics and contractility and cardiac function post-ischemia. We performed methylated (m6A) RNA immunoprecipitation sequencing (MeRIP-seq) to map transcriptome-wide m6A, and MeRIP qPCR assays to map and validate m6A in individual transcripts, in healthy and failing hearts and myocytes. -We discovered that FTO has decreased expression in failing mammalian hearts and hypoxic cardiomyocytes, thereby increasing m6A in RNA and decreasing cardiomyocyte contractile function. Improving expression of FTO in failing mouse hearts attenuated the ischemia-induced increase in m6A and decrease in cardiac contractile function. This is carried out by the demethylation activity of FTO, which selectively demethylates cardiac contractile transcripts, thus preventing their degradation and improving their protein expression under ischemia. Additionally, we demonstrate that FTO overexpression in mouse models of MI decreased fibrosis and enhanced angiogenesis. -Collectively, our study demonstrates the functional importance of FTO-dependent cardiac m6A methylome in cardiac contraction during heart failure and provides a novel mechanistic insight into the therapeutic mechanisms of FTO.
The ability to accelerate the spatial encoding process during a chemical shift imaging (CSI) scan of hyperpolarized compounds is demonstrated through parallel imaging. A hardware setup designed to simultaneously acquire (13)C data from multiple receivers is presented here. A system consisting of four preamplifiers, four gain stages, a transmit coil, and a four receive channel rat coil was built for single channel excitation and simultaneous multi-channel detection of (13)C signals. The hardware setup was integrated with commercial scanner electronics, allowing the system to function similar to a conventional proton multi-channel setup, except at a different frequency. The ability to perform parallel imaging is demonstrated in vivo. CSI data from the accelerated scans are reconstructed using a self-calibrated multi-spectral parallel imaging algorithm, by using lower resolution coil sensitivity maps obtained from the central region of k-space. The advantages and disadvantages of parallel imaging in the context of imaging hyperpolarized compounds are discussed.
Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4’-[(2-methoxy-1,4-phenylene)di-(1E)-2,1-ethenediyl]bis-benzenamine (BMB) and a newly synthesized, red-shifted derivative 4-[(1E)-2-[4-[(1E)-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082) were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier, and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. Results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration) imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.