Purpose: Current chemotherapeutic regimens have only modest benefit for non-small cell lung cancer (NSCLC) patients. Cumulative toxicities/drug resistance limit chemotherapy given after the first-line regimen. For personalized chemotherapy, clinically relevant NSCLC models are needed for quickly predicting the most effective regimens for therapy with curative intent. In this study, first generation subrenal capsule xenografts of primary NSCLCs were examined for (a) determining responses to conventional chemotherapeutic regimens and (b) selecting regimens most effective for individual patients.Experimental Design: Pieces (1×3×3 mm 3 ) of 32 nontreated, completely resected patients' NSCLCs were grafted under renal capsules of nonobese diabetic/severe combined immunodeficient mice and treated with (A) cisplatin+vinorelbine, (B) cisplatin+docetaxel, (C) cisplatin+gemcitabine, and positive responses (treated tumor area ≤50% of control, P < 0.05) were determined. Clinical outcomes of treated patients were acquired.Results: Xenografts from all NSCLCs were established (engraftment rate, 90%) with the retention of major biological characteristics of the original cancers. The entire process of drug assessment took 8 weeks. Response rates to regimens A, B, and C were 28% (9 of 32), 42% (8 of 19), and 44% (7 of 16), respectively. Certain cancers that were resistant to a particular regimen were sensitive to others. The majority of responsive tumors contained foci of nonresponding cancer cells, indicative of tumor heterogeneity and potential drug resistance. Xenografts from six of seven patients who developed recurrence/metastasis were nonresponsive.Conclusions: Models based on first generation NSCLC subrenal capsule xenografts have been developed, which are suitable for quick assessment (6-8 weeks) of the chemosensitivity of patients' cancers and selection of the most effective regimens. They hold promise for application in personalized chemotherapy of NSCLC patients. Clin Cancer Res; 16(5); 1442-51. ©2010 AACR.Lung cancer is the leading cause of cancer-related mortality worldwide (1). Non-small cell lung cancer (NSCLC) represents over 80% of lung cancer deaths (2, 3). Chemotherapy has been shown to improve the survival of patients with advanced, inoperable NSCLCs or, as adjuvant therapy, to reduce the rate of relapse of patients following resection of early-stage cancers (2, 3). Generally, two-drug combinations of cytotoxic drugs such as gemcitabine, vinorelbine, and docetaxel with cisplatin or carboplatin are used. A recent meta-analysis study showed that platinum-based, adjuvant chemotherapy of patients with resected NSCLCs was associated with a 5% greater 5-year survival rate, revealing marginal effectiveness of current chemotherapeutic regimens (4). Moreover, only a portion of patients who receive first-line treatment can receive further chemotherapy because of rapid disease progression and intolerance to side effects. Additional chemotherapy is particularly limited for patients who have experienced severe toxic...
BackgroundResistance to platinum-based chemotherapy remains a major impediment in the treatment of serous epithelial ovarian cancer. The objective of this study was to use gene expression profiling to delineate major deregulated pathways and biomarkers associated with the development of intrinsic chemotherapy resistance upon exposure to standard first-line therapy for ovarian cancer.MethodsThe study cohort comprised 28 patients divided into two groups based on their varying sensitivity to first-line chemotherapy using progression free survival (PFS) as a surrogate of response. All 28 patients had advanced stage, high-grade serous ovarian cancer, and were treated with standard platinum-based chemotherapy. Twelve patient tumours demonstrating relative resistance to platinum chemotherapy corresponding to shorter PFS (< eight months) were compared to sixteen tumours from platinum-sensitive patients (PFS > eighteen months). Whole transcriptome profiling was performed using an Affymetrix high-resolution microarray platform to permit global comparisons of gene expression profiles between tumours from the resistant group and the sensitive group.ResultsMicroarray data analysis revealed a set of 204 discriminating genes possessing expression levels which could influence differential chemotherapy response between the two groups. Robust statistical testing was then performed which eliminated a dependence on the normalization algorithm employed, producing a restricted list of differentially regulated genes, and which found IGF1 to be the most strongly differentially expressed gene. Pathway analysis, based on the list of 204 genes, revealed enrichment in genes primarily involved in the IGF1/PI3K/NF κB/ERK gene signalling networks.ConclusionsThis study has identified pathway specific prognostic biomarkers possibly underlying a differential chemotherapy response in patients undergoing standard platinum-based treatment of serous epithelial ovarian cancer. In addition, our results provide a pathway context for further experimental validations, and the findings are a significant step towards future therapeutic interventions.
ContributorsGIW wrote and revised the manuscript in response to co-author comments. He finalized all the figures and tables, performed the literature search, and assisted with data interpretation. HJK critically reviewed the manuscript and made important suggestions to improve it. He assisted with data interpretation. IBA performed the data analysis, constructed the figures and tables, and made important suggestions to improve the manuscript. H-CK assisted with the data analysis and also reviewed the manuscript. GRC critically reviewed the manuscript and made important suggestions to improve it. He assisted with data interpretation. All other authors were given the opportunity to review the manuscript and make suggestions which GIW received, either revising the paper or providing explanations. All who are not deceased were involved with approval of the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.