BackgroundThe epithelial to mesenchymal transition (EMT) is a molecular process through which an epithelial cell undergoes transdifferentiation into a mesenchymal phenotype. The role of EMT in embryogenesis is well-characterized and increasing evidence suggests that elements of the transition may be important in other processes, including metastasis and drug resistance in various different cancers.MethodsAgilent 4 × 44 K whole human genome arrays and selected reaction monitoring mass spectrometry were used to investigate mRNA and protein expression in A2780 cisplatin sensitive and resistant cell lines. Invasion and migration were assessed using Boyden chamber assays. Gene knockdown of snail and slug was done using targeted siRNA. Clinical relevance of the EMT pathway was assessed in a cohort of primary ovarian tumours using data from Affymetrix GeneChip Human Genome U133 plus 2.0 arrays.ResultsMorphological and phenotypic hallmarks of EMT were identified in the chemoresistant cells. Subsequent gene expression profiling revealed upregulation of EMT-related transcription factors including snail, slug, twist2 and zeb2. Proteomic analysis demonstrated up regulation of Snail and Slug as well as the mesenchymal marker Vimentin, and down regulation of E-cadherin, an epithelial marker. By reducing expression of snail and slug, the mesenchymal phenotype was largely reversed and cells were resensitized to cisplatin. Finally, gene expression data from primary tumours mirrored the finding that an EMT-like pathway is activated in resistant tumours relative to sensitive tumours, suggesting that the involvement of this transition may not be limited to in vitro drug effects.ConclusionsThis work strongly suggests that genes associated with EMT may play a significant role in cisplatin resistance in ovarian cancer, therefore potentially leading to the development of predictive biomarkers of drug response or novel therapeutic strategies for overcoming drug resistance.
One in seven men in North America is expected to be diagnosed with prostate cancer (PCa) during their lifetime ( 1 , 2 ). While a wide range of treatment options including surgery, radiation, androgen deprivation and chemotherapy have been in practice for the last few decades, there are limited treatment options for metastatic and treatment resistant disease. Immunotherapy targeting T-cell associated immune checkpoints such as CTLA-4, PD-L1, and PD-1 have not yet proven to be efficacious in PCa. Tumor mutational burden, mutations in DNA damage repair genes, immune cell composition and density in combination with their spatial organization, and expression of immune checkpoint proteins are some of the factors influencing the success of immune checkpoint inhibitor therapies. The paucity of these features in PCa potentially makes them unresponsive to contemporary immune checkpoint inhibition. In this review, we highlight the hallmark events in the PCa tumor immune microenvironment and provide insights into the current state of knowledge in this field with a focus on the role of tumor cell intrinsic events that potentially regulate immune related events and determine therapeutic outcomes. We surmise that the cumulative impact of factors such as the pre-treatment immune status, PTEN expression, DNA damage repair gene mutations, and the effects of conventionally used treatments on the anti-tumor immune response should be considered in immunotherapy trial design in PCa.
An important aspect of malignant progression is the acquired ability of tumor cells to avoid recognition and destruction by the immune system (immune escape). Clinical cancer progression is also associated with the development of tumor hypoxia, which is mechanistically linked to the acquisition of malignant phenotypes in cancer cells. Despite the well-established role of hypoxia in tumor cell invasion and metastasis, and resistance to therapy, relatively few studies have examined the contribution of hypoxia to cancer immune escape. Accumulating evidence reveals that hypoxia can impair anticancer immunity by altering the function of innate and adaptive immune cells and/or by increasing the intrinsic resistance of tumor cells to the cytolytic activity of immune effectors. Here, we discuss certain aspects of the contribution of hypoxia to tumor immune escape and provide evidence for a novel role of cyclic guanosine monophosphate (cGMP) signaling in the regulation of hypoxia-induced immune escape. Thus, we propose that activation of cGMP signaling in cancer cells may have important immunotherapeutic applications. Cancer Res; 74(24); 7185-90. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.