A collection of Providencia stuartii mutants which either underexpress or overexpress aac(2 )-Ia, the chromosomal gene coding for gentamicin 2 -N-acetyltransferase (EC 2.3.1.59), have been characterized phenotypically as possessing either lower or higher levels of peptidoglycan O acetylation, respectively, than the wild type. These mutants were subjected to both negative-staining and thin-section electron microscopy. P. stuartii PR100, with 42% O acetylation of peptidoglycan compared with 52% O acetylation in the wild type, appeared as irregular rods. In direct contrast, P. stuartii strains PR50.LM3 and PR51, with increased levels of peptidoglycan O acetylation (65 and 63%, respectively), appeared as coccobacilli and chain formers, respectively. Membrane blebbing was also observed with the chain-forming strain PR51. Thin sectioning of this mutant indicated that it was capable of proper constriction and separation. P. stuartii PM1, when grown to midexponential phase, did not have altered peptidoglycan O-acetylation levels, and cellular morphology remained similar to that of wild-type strains. However, continued growth into stationary phase resulted in a 15% increase in peptidoglycan O acetylation concomitant with a change of some cells from a rod-shaped to a coccobacillusshaped morphology. The fact that these apparent morphological changes were directly related to levels of O acetylation support the view that this modification plays a role in the maintenance of peptidoglycan structure, presumably through the control of autolytic activity.
H nuclear magnetic resonance to be the antibiotic. Authentic standards of 2-N-acetyltobramycin were prepared and were well separated from the parent antibiotic when subjected to the HPLC analysis. By applying this technique, the transfer of radiolabelled acetate from the cell wall polymer peptidoglycan to tobramycin was confirmed. In addition, isolated and purified AAC(2)-Ia was shown to catalyze in vitro the transfer of acetate from acetyl-coenzyme A, soluble fragments of peptidoglycan, and N-acetylglucosamine to tobramycin. These data further support the proposal that AAC(2)-Ia from P. stuartii may have a physiological role in its secondary metabolism and that its activity on aminoglycosides is simply fortuitous.
The gentamicin 2'-N-acetyltransferase [EC 2.3.1.59; AAC(2')-Ia] of Providencia stuartii was shown to contribute to the O-acetylation of peptidoglycan and mutants that either under- or overexpress the aac(2')-Ia gene was characterized phenotypically to possess either lower or higher levels of peptidoglycan O-acetylation, respectively, compared to the wild-type. These mutants were subjected to scanning electron microscopy. P. stuartii PR100, with 42-44% peptidoglycan O-acetylation compared to 54% for the wild-type, appeared as irregular rods. In direct contrast, strains PR50.LM3 and PR51, with increased levels of peptidoglycan O-acetylation (63 and 65%, respectively), appeared as coccobacilli or chain formers, respectively. Zymogram analysis of the autolysins produced by another member of the closely related Proteeae group of bacteria, Proteus mirabilis, indicated the presence of three classes of enzymes: one that acts preferentially on native, O-acetylated peptidoglycan, a second that hydrolyses non-O-acetylated peptidoglycan, and a third that is not distinguished by the two forms of substrate. On the basis of the apparent morphological changes directly related to levels of O-acetylation combined with the presence of different classes of autolysins, a model is proposed that invokes the role of this modification in the control of autolysins for the maintenance of the structure of the peptidoglycan sacculus.
Aspartic proteinases are a well-characterized class of proteinases. In plants, all nascent aspartic proteinases possess a 100-amino-acid, plant-specific sequence (PSS) within their C-terminal lobe, presumed to possess a targeting role in vivo. In this study, the PSS domain from the Arabidopsis thaliana aspartic proteinase was inserted into porcine pepsinogen at the identical location found in nascent plant aspartic proteinases, to create a chimaeric mammalian-plant enzyme. Based on enzymic activity, this chimaeric enzyme demonstrated increases in pH stability above 6 and temperature stability above 60 degrees C compared with commercial pepsin. Differential scanning calorimetry of the chimaeric enzyme illustrated an approx. 2 degrees C increase in denaturation temperature ( T (m)), with increases in co-operativity and similar enthalpy values. Kinetic analysis indicated an increase in K (m) and decreased k (cat) compared with pepsin, but with a catalytic efficiency similar to the monomeric plant aspartic proteinase from wheat. Using oxidized insulin B-chain, the chimaeric enzyme demonstrated more restricted substrate specificity in comparison with commercial pepsin. This study highlights the use of a chimaeric enzyme strategy in order to characterize unique protein domains within enzyme families, and, for the first time, a putative structure-function role for the PSS as it pertains to plant aspartic proteinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.