Human endogenous retroviruses (HERVs) constitute 8% of the human genome and have been implicated in both health and disease. Increased HERV gene activity occurs in immunologically activated glia, although the consequences of HERV expression in the nervous system remain uncertain. Here, we report that the HERV-W encoded glycoprotein syncytin is upregulated in glial cells within acute demyelinating lesions of multiple sclerosis patients. Syncytin expression in astrocytes induced the release of redox reactants, which were cytotoxic to oligodendrocytes. Syncytin-mediated neuroinflammation and death of oligodendrocytes, with the ensuing neurobehavioral deficits, were prevented by the antioxidant ferulic acid in a mouse model of multiple sclerosis. Thus, syncytin's proinflammatory properties in the nervous system demonstrate a novel role for an endogenous retrovirus protein, which may be a target for therapeutic intervention.
Recent studies suggest that increased T-cell and autoantibody reactivity to lipids may be present in the autoimmune demyelinating disease multiple sclerosis. To perform large-scale multiplex analysis of antibody responses to lipids in multiple sclerosis, we developed microarrays composed of lipids present in the myelin sheath, including ganglioside, sulfatide, cerebroside, sphingomyelin and total brain lipid fractions. Lipid-array analysis showed lipid-specific antibodies against sulfatide, sphingomyelin and oxidized lipids in cerebrospinal fluid (CSF) derived from individuals with multiple sclerosis. Sulfatide-specific antibodies were also detected in SJL/J mice with acute experimental autoimmune encephalomyelitis (EAE). Immunization of mice with sulfatide plus myelin peptide resulted in a more severe disease course of EAE, and administration of sulfatide-specific antibody exacerbated EAE. Thus, autoimmune responses to sulfatide and other lipids are present in individuals with multiple sclerosis and in EAE, and may contribute to the pathogenesis of autoimmune demyelination.
The neuromodulator adenosine regulates immune activation and neuronal survival through specific G-protein-coupled receptors expressed on macrophages and neurons, including the A1 adenosine receptor (A1AR). Here we show that A1AR null (A1AR Ϫ/Ϫ ) mice developed a severe progressive-relapsing form of experimental allergic encephalomyelitis (EAE) compared with their wild-type (A1AR ϩ/ϩ ) littermates. Worsened demyelination, axonal injury, and enhanced activation of microglia/macrophages were observed in A1AR Ϫ/Ϫ animals. In addition, spinal cords from A1AR Ϫ/Ϫ mice demonstrated increased proinflammatory gene expression during EAE, whereas anti-inflammatory genes were suppressed compared with A1AR ϩ/ϩ animals. Macrophages from A1AR Ϫ/Ϫ animals exhibited increased expression of the proinflammatory genes, interleukin-1, and matrix metalloproteinase-12 on immune activation when matched with A1AR ϩ/ϩ control cells. A1AR Ϫ/Ϫ macrophage-derived soluble factors caused significant oligodendrocyte cytotoxicity compared with wild-type controls. The A1AR was downregulated in microglia in A1AR ϩ/ϩ mice during EAE accompanied by neuroinflammation, which recapitulated findings in multiple sclerosis (MS) patients. Caffeine treatment augmented A1AR expression on microglia, with ensuing reduction of EAE severity, which was further enhanced by concomitant treatment with the A1AR agonist, adenosine amine congener. Thus, modulation of neuroinflammation by the A1AR represents a novel mechanism that provides new therapeutic opportunities for MS and other demyelinating diseases.
High-throughput technologies have led to advances in the recognition of disease pathways and their underlying mechanisms. To investigate the impact of micro-RNAs on the disease process in multiple sclerosis, a prototypic inflammatory neurological disorder, we examined cerebral white matter from patients with or without the disease by micro-RNA profiling, together with confirmatory reverse transcription-polymerase chain reaction analysis, immunoblotting and gas chromatography-mass spectrometry. These observations were verified using the in vivo multiple sclerosis model, experimental autoimmune encephalomyelitis. Brains of patients with or without multiple sclerosis demonstrated differential expression of multiple micro-RNAs, but expression of three neurosteroid synthesis enzyme-specific micro-RNAs (miR-338, miR-155 and miR-491) showed a bias towards induction in patients with multiple sclerosis (P < 0.05). Analysis of the neurosteroidogenic pathways targeted by micro-RNAs revealed suppression of enzyme transcript and protein levels in the white matter of patients with multiple sclerosis (P < 0.05). This was confirmed by firefly/Renilla luciferase micro-RNA target knockdown experiments (P < 0.05) and detection of specific micro-RNAs by in situ hybridization in the brains of patients with or without multiple sclerosis. Levels of important neurosteroids, including allopregnanolone, were suppressed in the white matter of patients with multiple sclerosis (P < 0.05). Induction of the murine micro-RNAs, miR-338 and miR-155, accompanied by diminished expression of neurosteroidogenic enzymes and allopregnanolone, was also observed in the brains of mice with experimental autoimmune encephalomyelitis (P < 0.05). Allopregnanolone treatment of the experimental autoimmune encephalomyelitis mouse model limited the associated neuropathology, including neuroinflammation, myelin and axonal injury and reduced neurobehavioral deficits (P < 0.05). These multi-platform studies point to impaired neurosteroidogenesis in both multiple sclerosis and experimental autoimmune encephalomyelitis. The findings also indicate that allopregnanolone and perhaps other neurosteroid-like compounds might represent potential biomarkers or therapies for multiple sclerosis.
Human endogenous retroviruses (HERVs) have been implicated as causative agents in diseases characterized by inflammation and macrophage activation, such as multiple sclerosis. Because monocyte activation and differentiation influence retroviral transcription and replication, we investigated the contribution of these processes to the expression of four HERV families (HERV-W, HERV-K, HERV-E, and HERV-H) in human monocytes, and autopsied brain tissue from patients with brain diseases associated with increased macrophage activity. Reverse transcriptase-polymerase chain reaction analysis of primary macrophages and U937 monocytoid cells stimulated with phorbol-12-myristate-13-acetate or lipopolysaccharide revealed three- to ninefold increases in HERV-W, HERV-K, and HERV-H RNA levels. In addition, elevated reverse transcriptase activity and HERV RNA were detectable in supernatants from PMA-stimulated U937 cultures, properties that could be attenuated with the inhibitor of monocyte differentiation threonine-lysine-proline. In contrast, stimulation of monocytes decreased or had no effect on HERV-E expression. Compared with controls, HERV-W and HERV-K expression was increased in brain tissue from patients with multiple sclerosis or human immunodeficiency virus infection or AIDS, with concomitant elevated tumor necrosis factor-alpha levels. Similarly, elevated HERV-W levels were detected in patients with Alzheimer's dementia only when tumor necrosis factor-alpha expression was also evident (2 of 6 cases). The detection of several HERVs in inflammatory brain diseases and the capacity to augment HERV expression in monocytes with compounds that influence cellular activity suggest that increased expression of these viruses is a consequence of increased immune activity rather than causative of distinct diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.