The mechanisms of neurodegeneration that result in human immunodeficiency virus (HIV) type 1 dementia have not yet been identified. Here, we report that HIV-infected macrophages secrete the zymogen matrix metalloproteinase-2 (MMP-2), which is activated by exposure to MT1-MMP on neurons. Stromal cell-derived factor 1 alpha (SDF-1), a chemokine overexpressed by astrocytes during HIV infection, was converted to a highly neurotoxic protein after precise proteolytic processing by active MMP-2, which removed the N-terminal tetrapeptide. Implantation of cleaved SDF-1(5-67) into the basal ganglia of mice resulted in neuronal death and inflammation with ensuing neurobehavioral deficits that were abrogated by neutralizing antibodies to SDF-1 and an MMP inhibitor drug. Hence, this study identifies a new in vivo neurotoxic pathway in which cleavage of a chemokine by an induced metalloproteinase results in neuronal apoptosis that leads to neurodegeneration.
Human endogenous retroviruses (HERVs) have been implicated as causative agents in diseases characterized by inflammation and macrophage activation, such as multiple sclerosis. Because monocyte activation and differentiation influence retroviral transcription and replication, we investigated the contribution of these processes to the expression of four HERV families (HERV-W, HERV-K, HERV-E, and HERV-H) in human monocytes, and autopsied brain tissue from patients with brain diseases associated with increased macrophage activity. Reverse transcriptase-polymerase chain reaction analysis of primary macrophages and U937 monocytoid cells stimulated with phorbol-12-myristate-13-acetate or lipopolysaccharide revealed three- to ninefold increases in HERV-W, HERV-K, and HERV-H RNA levels. In addition, elevated reverse transcriptase activity and HERV RNA were detectable in supernatants from PMA-stimulated U937 cultures, properties that could be attenuated with the inhibitor of monocyte differentiation threonine-lysine-proline. In contrast, stimulation of monocytes decreased or had no effect on HERV-E expression. Compared with controls, HERV-W and HERV-K expression was increased in brain tissue from patients with multiple sclerosis or human immunodeficiency virus infection or AIDS, with concomitant elevated tumor necrosis factor-alpha levels. Similarly, elevated HERV-W levels were detected in patients with Alzheimer's dementia only when tumor necrosis factor-alpha expression was also evident (2 of 6 cases). The detection of several HERVs in inflammatory brain diseases and the capacity to augment HERV expression in monocytes with compounds that influence cellular activity suggest that increased expression of these viruses is a consequence of increased immune activity rather than causative of distinct diseases.
HIV-1 Nef is expressed in astrocytes, but a contribution to neuropathogenesis and the development of HIV-associated dementia (HAD) remains uncertain. To determine the neuropathogenic actions of the HIV-1 Nef protein, the brain-derived (YU-2) and blood-derived (NL4-3) Nef proteins were expressed in neural cells using an alphavirus vector, which resulted in astrocyte death (P < 0.001). Supernatants from Nef-expressing astrocytes also caused neuronal death, suggesting the release of neurotoxic molecules by astrocytes. Analysis of pro-inflammatory gene induction in astrocytes expressing Nef revealed increased IP-10 mRNA expression (4000-fold) that was Nef sequence dependent. Recombinant IP-10 caused selective cell death in neurons (P < 0.001) but not astrocytes, and the cytotoxicity of supernatant from astrocytes expressing Nef YU-2 was blocked by an antibody directed against the chemokine receptor CXCR3 (P < 0.001). SCID/NOD mice implanted with a Nef YU-2-expressing vector displayed abnormal motor behavior (P < 0.05), neuroinflammation, and neuronal loss relative to controls. Analysis of mRNA levels in brains from patients with HAD also revealed increased expression of IP-10 (P < 0.05), which was confirmed by immunoreactivity detected principally in astrocytes. Phylogenetic and protein structure analyses of Nef sequences derived from HIV/AIDS patients with and without HAD suggested viral evolution toward a neurotropic Nef protein. These results indicate that HIV-1 Nef contributes to neuropathogenesis by directly causing astrocyte death together with indirect neuronal death through the cytotoxic actions of IP-10 on neurons. Furthermore, Nef molecular diversity was evident in brain tissue among patients with neurological disease and which may influence IP-10 production by astrocytes.
Infection of the brain by lentiviruses, including human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV), causes inflammation and results in neurodegeneration. Molecular diversity within the lentivirus envelope gene has been implicated in the regulation of cell tropism and the host response to infection. Here, we examine the hypothesis that envelope sequence diversity modulates the expression of host molecules implicated in lentivirus-induced brain disease, including matrix metalloproteinases (MMP) and related transcription factors. Infection of primary macrophages by chimeric HIV clones containing brainderived envelope fragments from patients with HIV-associated dementia (HAD) or nondemented AIDS patients (HIV-ND) showed that MMP-2 and -9 levels in conditioned media were significantly higher for the HAD clones. Similarly, STAT-1 and JAK-1 levels were higher in macrophages infected by HAD clones. Infections of primary feline macrophages by the neurovirulent FIV strain (V 1 CSF), the less neurovirulent strain (Petaluma), and a chimera containing the V 1 CSF envelope in a Petaluma background (FIV-Ch) revealed that MMP-2 and -9 levels were significantly higher in conditioned media from V 1 CSF-and FIV-Ch-infected macrophages, which was associated with increased intracellular STAT-1 and JAK-1 levels. The STAT-1 inhibitor fludarabine significantly reduced MMP-2 expression, but not MMP-9 expression, in FIV-infected macrophages. Analysis of MMP mRNA and protein levels in brain samples from HIV-infected persons or FIV-infected cats showed that MMP-2 and -9 levels were significantly increased in lentivirus-infected brains compared to those of uninfected controls. Elevated MMP expression was accompanied by significant increases in STAT-1 and JAK-1 mRNA and protein levels in the same brain samples. The present findings indicate that two lentiviruses, HIV and FIV, have common mechanisms of MMP-2 and -9 induction, which is modulated in part by envelope sequence diversity and the STAT-1/JAK-1 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.