Ferroptosis is an iron-catalysed, non-apoptotic form of regulated necrosis that results in oxidative lipid damage in cell membranes that can be inhibited by the radical-trapping antioxidant Ferrostatin-1 (Fer-1).Novel inhibitors derived from the Fer-1 scaffold inhibited ferroptosis potently but suffered from solubility issues. In this paper, we report the synthesis of a more stable and readily soluble series of Fer-1 analogues that potently inhibit ferroptosis. The most promising compounds (37, 38 and 39) showed an improved protection compared to Fer-1 against multi-organ injury in mice. No toxicity was observed in mice after daily injection of 39 (UAMC-3203) for 4 weeks. UAMC-3203 inserts rapidly in a phospholipid bilayer in silico, which aligns with the current understanding of the mechanism of action of these compounds. Concludingly, these analogues have superior properties compared to Fer-1, show in vivo efficacy and represent novel lead compounds with therapeutic potential in relevant ferroptosis-driven disease models.
The caseinolytic protease proteolytic subunit (ClpP) is a serine protease playing an important role in proteostasis of eukaryotic organelles and prokaryotic cells. Alteration of ClpP function has been proved to affect the virulence and infectivity of a number of pathogens. Increased bacterial resistance to antibiotics has become a global problem and new classes of antibiotics with novel mechanisms of action are needed. In this regard, ClpP has emerged as an attractive and potentially viable option to tackle pathogen fitness without suffering cross-resistance to established antibiotic classes and, when not an essential target, without causing an evolutionary selection pressure. This opens a greater window of opportunity for the host immune system to clear the infection by itself or by co-administration with commonly prescribed antibiotics. A comprehensive overview of the function, regulation and structure of ClpP across the different organisms is given. Discussion about mechanism of action of this protease in bacterial pathogenesis and human diseases are outlined, focusing on the compounds developed in order to target the activation or inhibition of ClpP.
Simulations of membrane proteins have been rising in popularity in the past decade. Advancements in technology and force fields made it possible to simulate behavior of membrane proteins. Membrane protein simulations can now be used as supporting evidence for experimental findings, for elucidating protein mechanisms, and validating protein crystal structures. Unrelated to experimental data, these simulations can also serve to investigate larger scale processes like protein sorting, protein–membrane interactions, and more. In this review, the history as well as the state-of-the-art methodologies in membrane protein simulations will be summarized. An emphasis will be put on how to set up the system and on the current models for the different components of the simulation system. An overview of the available tools for membrane protein simulation will be given, and current limitations and prospects will also be discussed.
Receptor interacting protein kinase 1 (RIPK1) plays a crucial role in tumor necrosis factor (TNF)-induced necroptosis, suggesting that this pathway might be druggable. Most inhibitors of RIPK1 are classified as either type II or type III kinase inhibitors. This opened up some interesting perspectives for the discovery of novel inhibitors that target the active site of RIPK1. Tozasertib, a type I pan-aurora kinase (AurK) inhibitor, was found to show a very high affinity for RIPK1. Because tozasertib presents the typical structural elements of a type I kinase inhibitor, the development of structural analogues of tozasertib is a good starting point for identifying novel type I RIPK1 inhibitors. In this paper, we identified interesting inhibitors of mTNF-induced necroptosis with no significant effect on AurK A and B, resulting in no nuclear abnormalities as is the case for tozasertib. Compounds 71 and 72 outperformed tozasertib in an in vivo TNF-induced systemic inflammatory response syndrome (SIRS) mouse model.
The fragment docking program solvation energy for exhaustive docking (SEED) is evaluated on 15 different protein targets, with a focus on enrichment and the hit rate. It is shown that SEED allows for consistent computational enrichment of fragment libraries, independent of the effective hit rate. Depending on the actual target protein, true positive rates ranging up to 27% are observed at a cutoff value corresponding to the experimental hit rate. The impact of variations in docking protocols and energy filters is discussed in detail. Remaining issues, limitations, and use cases of SEED are also discussed. Our results show that fragment library selection or enhancement for a particular target is likely to benefit from docking with SEED, suggesting that SEED is a useful resource for fragment screening campaigns. A workflow is presented for the use of the program in virtual screening, including filtering and postprocessing to optimize hit rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.