Parthenolide displaces [3H]ketanserin from 5HT2A receptors from rat and rabbit brain and cloned 5HT2A receptors. Ki's are in the 100-250 microM range. These results suggest that parthenolide may be a low-affinity antagonist at 5HT receptors; it is unlikely that the entire mechanism of action can be explained by its modest 5HT2A receptor affinity.
15 amino acid peptide from the transmembrane 5-intracellular loop 3 region of the human 5HT1a receptor produced concentration-dependent decreases in agonist binding. This result is consistent with a competitive interaction between peptide, receptor, and G protein at the receptor-G protein interface. Bombesin and a 13 amino acid peptide from the carboxyl terminus region of the receptor were inactive. Additionally, the peptide decreased forskolin-mediated cAMP elevation. Overall, these results suggest that amino acid residues from this region of the receptor are involved in receptor-G protein coupling and that G protein is activated by the receptor.
15 amino acid peptide from the transmembrane 5-intracellular loop 3 region of the human 5HT1a receptor produced concentration-dependent decreases in agonist binding. This result is consistent with a competitive interaction between peptide, receptor, and G protein at the receptor-G protein interface. Bombesin and a 13 amino acid peptide from the carboxyl terminus region of the receptor were inactive. Additionally, the peptide decreased forskolin-mediated cAMP elevation. Overall, these results suggest that amino acid residues from this region of the receptor are involved in receptor-G protein coupling and that G protein is activated by the receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.