Populations in fragmented landscapes experience reduced gene flow, lose genetic diversity over time and ultimately face greater extinction risk. Improving connectivity in fragmented landscapes is now a major focus of conservation biology. Designing effective wildlife corridors for this purpose, however, requires an accurate understanding of how landscapes shape gene flow. The preponderance of landscape resistance models generated to date, however, is subjectively parameterized based on expert opinion or proxy measures of gene flow. While the relatively few studies that use genetic data are more rigorous, frameworks they employ frequently yield models only weakly related to the observed patterns of genetic isolation. Here, we describe a new framework that uses expert opinion as a starting point. By systematically varying each model parameter, we sought to either validate the assumptions of expert opinion, or identify a peak of support for a new model more highly related to genetic isolation. This approach also accounts for interactions between variables, allows for nonlinear responses and excludes variables that reduce model performance. We demonstrate its utility on a population of mountain goats inhabiting a fragmented landscape in the Cascade Range, Washington.
Single nucleotide polymorphisms (SNPs) are appealing genetic markers due to several beneficial attributes, but uncertainty remains about how many of these bi-allelic markers are necessary to have sufficient power to differentiate populations, a task now generally accomplished with highly polymorphic microsatellite markers. In this study, we tested the utility of 37 SNPs and 13 microsatellites for differentiating 29 broadly distributed populations of Chinook salmon (n = 2783). Information content of all loci was determined by In and , and the top 12 markers ranked by In were microsatellites, but the 6 highest, and 7 of the top 10 ranked markers, were SNPs. The mean ratio of random SNPs to random microsatellites ranged from 3.9 to 4.1, but this ratio was consistently reduced when only the most informative loci were included. Individual assignment test accuracy was higher for microsatellites (73.1%) than SNPs (66.6%), and pooling all 50 markers provided the highest accuracy (83.2%). When marker types were combined, as few as 15 of the top ranked loci provided higher assignment accuracy than either microsatellites or SNPs alone. Neighbour-joining dendrograms revealed similar clustering patterns and pairwise tests of population differentiation had nearly identical results with each suite of markers. Statistical tests and simulations indicated that closely related populations were better differentiated by microsatellites than SNPs. Our results indicate that both types of markers are likely to be useful in population genetics studies and that, in some cases, a combination of SNPs and microsatellites may be the most effective suite of loci. Fig. 2 Chord distance (D CSE ) neighbour-joining dendrograms and self-assignment matrices of populations of Chinook salmon from North America as determined with (a) 13 microsatellites, (b) 37 SNPs, and (c) all 50 markers combined. The diagonal represents the percentage of self-assigned individuals from a population and shaded blocks above and below the diagonal indicate percentage of mis-assignments to populations corresponding with the dendrogram. Grey grid lines correspond to regional clusters in the neighbour-joining dendrogram. Shading scale at the right of each figure depicts percentage assignment in 10% increments. 3472 S . R . N A R U M E T A L .
Studies of the oceanic and near-shore distributions of Pacific salmon, whose migrations typically span thousands of kilometres, have become increasingly valuable in the presence of climate change, increasing hatchery production and potentially high rates of bycatch in offshore fisheries. Genetics data offer considerable insights into both the migratory routes as well as the evolutionary histories of the species. However, these types of studies require extensive data sets from spawning populations originating from across the species' range. Single nucleotide polymorphisms (SNPs) have been particularly amenable for multinational applications because they are easily shared, require little interlaboratory standardization and can be assayed through increasingly efficient technologies. Here, we discuss the development of a data set for 114 populations of chum salmon through a collaboration among North American and Asian researchers, termed PacSNP. PacSNP is focused on developing the database and applying it to problems of international interest. A data set spanning the entire range of species provides a unique opportunity to examine patterns of variability, and we review issues associated with SNP development. We found evidence of ascertainment bias within the data set, variable linkage relationships between SNPs associated with ancestral groupings and outlier loci with alleles associated with latitude.
A three‐trophic‐level interaction among American Black Oystercatchers (Haematopus bachmani), limpets (Lottia spp.), and erect fleshy algae in rocky intertidal communities of central and southern California was documented via manipulative and “natural” experiments. Removal of the territorial limpet (Lottia gigantea) initially caused large increases in the percent cover of erect fleshy algae, followed by a more gradual increase in density of small limpets (Lottia spp.) and a decline in algal cover. Algal cover increased following the removal of small limpets at the sites from which L. gigantea had been removed earlier, thus demonstrating that the large and small limpets had similar inhibitory effects on plant populations. A comparison of sites with and without oystercatchers showed that L. gigantea occupied substrate inclinations in proportion to their availability at sites where oystercatchers were rare, whereas the distribution of L. gigantea was skewed toward vertically inclined substrates where oystercatchers were common. Survival rates of limpets translocated to horizontal and vertical substrates were similar in sites lacking oystercatcher predation, but were much lower on horizontal substrates where oystercatchers were common. Our results are consistent with those from several prior studies in demonstrating that shorelines frequented by humans typically lack oystercatchers. Humans also exploit L. gigantea and reduce populations to low densities of small individuals. These findings may explain why the midlittoral zone of rocky intertidal communities in western North America are so often dominated by high population densities of small limpets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.