Serum ferritin isolated from the horse was structurally compared with horse spleen ferritin and was found to differ markedly in molecular weight, iron content, carbohydrate, subunit size and amino acid sequence. The results are summarized and initial results obtained with candidate clones of pieces of two serum ferritin subunits are described.
The possibility that serum ferritin is a secreted protein and an acute phase reactant regulated by inflammatory hormones and iron was examined in a hepatic cell line that secretes plasma proteins. Differentiated rat hepatoma cells released albumin and ferritin into the medium, as determined by rocket immunoelectrophoresis and isolation of ferritin by standard procedures plus immunoaffinity chromatography, following labeling with radioactive amino acid. Administration of interleukin-1–β (IL-1) or tumor necrosis factor-α (TNF) doubled the amounts of ferritin released into the medium over 24 and 48 hours. Together, the cytokines had more than an additive effect. Albumin secretion was diminished by IL-1, but not TNF. Iron, administered as an iron dextran complex or as a 1:1 chelate with nitrilotriacetate (Fe-NTA), also enhanced ferritin release, but had no effect on albumin. Intracellular ferritin concentrations did not change significantly with cytokine treatment, but increased in response to iron. With or without treatments, release of ferritin and albumin from cells into the medium was inhibited by brefeldin A, an inhibitor of Golgi function. The effect of each of the cytokines and of iron on ferritin and albumin was also blocked by dichlorofuranosylbenzimidazole (DRB), an inhibitor of transcription. The stimulatory effect of Fe-NTA on ferritin secretion was diminished by TNF, and this was partially counteracted by IL-1, indicating additional regulatory complexity. These results show for the first time that hepatic cells secrete ferritin, that this ferritin secretion is regulated by iron and inflammatory cytokines, and that the mechanisms of regulation differ from those for intracellular ferritin. The results would explain why serum ferritin increases in inflammation or when iron flux is enhanced.
The possibility that serum ferritin is a secreted protein and an acute phase reactant regulated by inflammatory hormones and iron was examined in a hepatic cell line that secretes plasma proteins. Differentiated rat hepatoma cells released albumin and ferritin into the medium, as determined by rocket immunoelectrophoresis and isolation of ferritin by standard procedures plus immunoaffinity chromatography, following labeling with radioactive amino acid. Administration of interleukin-1–β (IL-1) or tumor necrosis factor-α (TNF) doubled the amounts of ferritin released into the medium over 24 and 48 hours. Together, the cytokines had more than an additive effect. Albumin secretion was diminished by IL-1, but not TNF. Iron, administered as an iron dextran complex or as a 1:1 chelate with nitrilotriacetate (Fe-NTA), also enhanced ferritin release, but had no effect on albumin. Intracellular ferritin concentrations did not change significantly with cytokine treatment, but increased in response to iron. With or without treatments, release of ferritin and albumin from cells into the medium was inhibited by brefeldin A, an inhibitor of Golgi function. The effect of each of the cytokines and of iron on ferritin and albumin was also blocked by dichlorofuranosylbenzimidazole (DRB), an inhibitor of transcription. The stimulatory effect of Fe-NTA on ferritin secretion was diminished by TNF, and this was partially counteracted by IL-1, indicating additional regulatory complexity. These results show for the first time that hepatic cells secrete ferritin, that this ferritin secretion is regulated by iron and inflammatory cytokines, and that the mechanisms of regulation differ from those for intracellular ferritin. The results would explain why serum ferritin increases in inflammation or when iron flux is enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.