A new composition of gelatin/bioactive-glass/silver nanoparticle was synthesized and employed to prepare antibacterial macroporous scaffolds with potential applications in bone tissue engineering. A set of macroporous nanocomposite scaffolds were developed from an aqueous solution of gelatin by freeze-drying and crosslinking using genipin at ambient temperature. Silver nanoparticles were successfully synthesized in situ in gelatin solution by heat treatment reduction as a simple and "green" method in which gelatin acted as a natural reducing and stabilizing agent. The effect of the incorporation of the bioactive-glass and the silver nanoparticle concentration on the physicochemical properties of the scaffolds, such as the gel fraction, porosity, in vitro enzyme degradation, morphology, and swelling behavior was studied. Furthermore, the in vitro viability of human mesenchymal stem cells (hMSC) and the antibacterial activity against gram-negative Escherichia coli and gram-positive Staphylococcus aureus were tested on the scaffolds. It was found that upon the addition of silver nanoparticles the porosity, pore size, swelling, and antibacterial properties were enhanced. The silver nanoparticles increased the in vitro enzyme degradation in samples without bioactive-glass; however, the degradation was remarkably reduced by addition of bioactive-glass. In addition, formation of apatite particles, the main inorganic constituent of the bone, on the surface of the bioactive-glass containing scaffolds were confirmed after immersion in simulated body fluid (SBF). The viability of hMSC on the scaffold suggested that gelatin/bioactive-glass/nanosilver scaffolds can be used as an antibacterial scaffolds.
Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli.
In this study, chitosan-based hydrogels were formulated with material similarities to three of the four zones of articular cartilage. Gelatin, hyaluronic acid (HA), and β-tricalcium phosphate for the superficial, radial, and calcified zones, were blended in different amounts and tested for formation of uniform solution, gelability, and rheological characteristics. Confined compression in two configurations (series and parallel to anisotropy), and cyclical tests were performed at the physiological conditions. In vivo gelation and systemic effects were evaluated in male BALB/c mice subcutaneous model. At day 5, hydrogels were harvested along with the adjoining skin and analyzed by histology. Formulations that produced solutions after pH adjustments were selected for each zone. Anisotropic hydrogels were formed by mixing solutions from each zone, which showed uniform gradation. Addition of HA improved structural integrity relative to other formulations. When hydrogels were in series, combined hydrogel modulus was the average of all zones while that in parallel orientation was half of that series orientation. Cyclical tests demonstrated repeatable strength and durability. All formulations were injectable into the subcutaneous region. H/E stained tissues showed minimal invasion of inflammatory cells in radial and calcified zones. Structural integrity of the hydrogel is suggested to be the resultant of the presence of HA.
In this paper, the biocompatibility of a medical-grade stainless steel coated with sol-gel derived, nanostructured inorganic ZrTiO4 and hybrid ZrTiO4-PMMA thin films is correlated with surface characteristics. The surfaces of the samples are characterized by atomic force microscopy, the sessile drop technique, and electrochemical corrosion experiments. The viability of adult human mesenchymal stem cells on the surfaces after one day of culture is also assessed quantitatively and morphologically. According to the results, both of the coatings improve the hydrophilicity, corrosion resistance, and thereby cytocompatibility of the substrate. Despite the higher corrosion protection by the hybrid coating, the sample coated with the inorganic thin film exhibits a better cell response, suggesting the domination of wettability. In summary, the ZrTiO4-based sol-gel films can be considered to improve the biocompatibility of metallic implants.
Influence of mechanical characteristics and matrix architecture of substrates used in cell culture is an important issue to tissue engineering. Chitosan-based materials have been processed into porous structures, injectable gels and membranes, and are investigated to regenerate various tissues. However, the effect of these structures on cell growth and matrix production in accordance with each of the differing scaffolds has not been examined. We investigated the influence of porous structures, hydrogels, and membranes on the growth of normal human fibroblasts and their matrix production in a serum-free system. We used chitosan alone and in combination with gelatin. Injectable hydrogels were prepared using 2-glycerol phosphate. From the same solution, porous scaffolds and membranes were formed using controlled rate freezing and lyophilization, and air-drying, respectively. Fibroblast growth was evaluated on the 4th and 10th days using flow cytometry and CFDA-SE pre-staining. Cell morphology was assessed using actin and nucleus staining. Total protein content, collagen, tropoelastin, and MMP2/MMP-9 activity in the media supernatant were assessed by BCA, Sircol™, Fastin Elastin, and fluorogeneic peptide assays. Collagen accumulated in the matrix was assessed by Sircol™ assay after pepsin/acetic acid digestion and by Masson's Trichrome staining. These results showed increased viability of fibroblasts on chitosan-gelatin porous scaffold with decreased proliferation relative to tissue culture plastic (TCP) surface despite the cells showing spindle shape. The total protein, collagen, and tropoelastin contents were higher in the spent media from chitosan-gelatin porous scaffolds compared to other conditions. MMP2/MMP9 activity was comparable to TCP. An increase in collagen content was also observed in the matrix, suggesting increased matrix deposition. In summary, matrix production is influenced by the form of chitosan structures, which significantly affects the regenerative process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.