In the context of Internet of Things (IoT) for Smart City (SC) applications, Mobile Data Collectors (MDCs) can be opportunistically exploited as wireless energy transmitters to recharge the energy-constrained IoT sensor-nodes placed within their charging vicinity or coverage area. The use of MDCs has been well studied and presents several advantages compared to the traditional methods that employ static sinks. However, data collection and transmission from the hundreds of thousands of sensors sparsely distributed across virtually every smart city has raised some new challenges. One of these concerns lies in how these sensors are being powered as majority of the IoT sensors are extremely energy-constrained owing to their smallness and mode of deployments. It is also evident that sensor-nodes closer to the sinks dissipate their energy faster than their counterparts. Moreover, battery recharging or replacement is impractical and incurs very large operational costs. Recent breakthrough in wireless power transfer (WPT) technologies allows the transfer of energy to the energy-hungry IoT sensor-nodes wirelessly. WPT finds applications in medical implants, electric vehicles, wireless sensor networks (WSNs), unmanned aerial vehicles (UAVs), mobile phones, and so on. The present study highlights the use of mobile collectors (data mules) as wireless power transmitters for opportunistic IoT-SC operations. Specifically, mobile vehicles used for data collection are further exploited as wireless power transmitters (wireless battery chargers) to wirelessly recharge the energy-constrained IoT nodes placed within their coverage vicinity. This paper first gives a comprehensive survey of the different aspects of wireless energy transmission technologies—architecture, energy sources, IoT energy harvesting modes, WPT techniques and applications that can be exploited for SC scenarios. A comparative analysis of the WPT technologies is also highlighted to determine the most energy-efficient technique for IoT scenarios. We then propose a WPT scheme that exploits vehicular networks for opportunistic IoT-SC operations. Experiments are conducted using simulations to evaluate the performance of the proposed model and to investigate WPT efficiency of a power-hungry opportunistic IoT network for different trade-off factors.
With the recent increase in urban drift, which has led to an unprecedented surge in urban population, the smart city (SC) transportation industry faces a myriad of challenges, including the development of efficient strategies to utilize available infrastructures and minimize traffic. There is, therefore, the need to devise efficient transportation strategies to tackle the issues affecting the SC transportation industry. This paper reviews the state-of-the-art for SC transportation techniques and approaches. The paper gives a comprehensive review and discussion with a focus on emerging technologies from several information and data-driven perspectives including (1) geoinformation approaches; (2) data analytics approaches; (3) machine learning approaches; (4) integrated deep learning approaches; (5) artificial intelligence (AI) approaches. The paper contains core discussions on the impacts of geo-information on SC transportation, data-driven transportation and big data technology, machine learning approaches for SC transportation, innovative artificial intelligence (AI) approaches for SC transportation, and recent trends revealed by using integrated deep learning towards SC transportation. This survey paper aimed to give useful insights to researchers regarding the roles that data-driven approaches can be utilized for in smart cities (SCs) and transportation. An objective of this paper was to acquaint researchers with the recent trends and emerging technologies for SC transportation applications, and to give useful insights to researchers on how these technologies can be exploited for SC transportation strategies. To the best of our knowledge, this is the first comprehensive review that examines the impacts of the various five driving technological forces—geoinformation, data-driven and big data technology, machine learning, integrated deep learning, and AI—in the context of SC transportation applications.
This paper proposes energy-efficient swarm intelligence (SI)-based approaches for efficient mobile wireless charging in a distributed large-scale wireless sensor network (LS-WSN). This approach considers the use of special multiple mobile elements, which traverse the network for the purpose of energy replenishment. Recent techniques have shown the advantages inherent to the use of a single mobile charger (MC) which periodically visits the network to replenish the sensor-nodes. However, the single MC technique is currently limited and is not feasible for LS-WSN scenarios. Other approaches have overlooked the need to comprehensively discuss some critical tradeoffs associated with mobile wireless charging, which include: (1) determining the efficient coordination and charging strategies for the MCs, and (2) determining the optimal amount of energy available for the MCs, given the overall available network energy. These important tradeoffs are investigated in this study. Thus, this paper aims to investigate some of the critical issues affecting efficient mobile wireless charging for large-scale WSN scenarios; consequently, the network can then be operated without limitations. We first formulate the multiple charger recharge optimization problem (MCROP) and show that it is N-P hard. To solve the complex problem of scheduling multiple MCs in LS-WSN scenarios, we propose the node-partition algorithm based on cluster centroids, which adaptively partitions the whole network into several clusters and regions and distributes an MC to each region. Finally, we provide detailed simulation experiments using SI-based routing protocols. The results show the performance of the proposed scheme in terms of different evaluation metrics, where SI-based techniques are presented as a veritable state-of-the-art approach for improved energy-efficient mobile wireless charging to extend the network operational lifetime. The investigation also reveals the efficacy of the partial charging, over the full charging, strategies of the MCs.
The advancements and progress in artificial intelligence (AI) and machine learning, and the numerous availabilities of mobile devices and Internet technologies together with the growing focus on multimedia data sources and information processing have led to the emergence of new paradigms for multimedia and edge AI information processing, particularly for urban and smart city environments. Compared to cloud information processing approaches where the data are collected and sent to a centralized server for information processing, the edge information processing paradigm distributes the tasks to multiple devices which are close to the data source. Edge information processing techniques and approaches are well suited to match current technologies for Internet of Things (IoT) and autonomous systems, although there are many challenges which remain to be addressed. The motivation of this paper was to survey these new paradigms for multimedia and edge information processing from several technological perspectives including: (1) multimedia analytics on the edge empowered by AI; (2) multimedia streaming on the intelligent edge; (3) multimedia edge caching and AI; (4) multimedia services for edge AI; and (5) hardware and devices for multimedia on edge intelligence. The review covers a wide spectrum of enabling technologies for AI and machine learning for multimedia and edge information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.