OBJECTIVE— Many of the effects of angiotensin (Ang) II are mediated through specific plasma membrane receptors. However, Ang II also elicits biological effects from the interior of the cell (intracrine), some of which are not inhibited by Ang receptor blockers (ARBs). Recent in vitro studies have identified high glucose as a potent stimulus for the intracellular synthesis of Ang II, the production of which is mainly chymase dependent. In the present study, we determined whether hyperglycemia activates the cardiac intracellular renin-Ang system (RAS) in vivo and whether ARBs, ACE, or renin inhibitors block synthesis and effects of intracellular Ang II (iAng II). RESEARCH DESIGN AND METHODS— Diabetes was induced in adult male rats by streptozotocin. Diabetic rats were treated with insulin, candesartan (ARB), benazepril (ACE inhibitor), or aliskiren (renin inhibitor). RESULTS— One week of diabetes significantly increased iAng II levels in cardiac myocytes, which were not normalized by candesartan, suggesting that Ang II was synthesized intracellularly, not internalized through AT 1 receptor. Increased intracellular levels of Ang II, angiotensinogen, and renin were observed by confocal microscopy. iAng II synthesis was blocked by aliskiren but not by benazepril. Diabetes-induced superoxide production and cardiac fibrosis were partially inhibited by candesartan and benazepril, whereas aliskiren produced complete inhibition. Myocyte apoptosis was partially inhibited by all three agents. CONCLUSIONS— Diabetes activates the cardiac intracellular RAS, which increases oxidative stress and cardiac fibrosis. Renin inhibition has a more pronounced effect than ARBs and ACE inhibitors on these diabetes complications and may be clinically more efficacious.
We have recently shown that the octapeptide angiotensin II is a potent stimulus of protein synthesis and growth in cultured cardiomyocytes. The present study was performed to determine if the renin-angiotensin system was involved in regulating cardiac cell growth in vivo. The pressure-overload cardiac hypertrophy model that develops in abdominal aorta-constricted rats was studied. At 7 and 15 days after abdominal aorta constriction, rats developed significant left ventricular hypertrophy. The increase in left ventricular mass was completely prevented in animals fed the angiotensin-converting enzyme inhibitor, enalapril maleate (0.2 mg/ml) in their drinking water. Cardiac afterload was the same in both groups of animals in that carotid artery pressures were not different in conscious awake aortic-constricted animals receiving and not receiving enalapril. These data suggest a direct growth effect of angiotensin II on the left ventricle and indicate a role for the renin-angiotensin system in the cardiac hypertrophy that develops in response to pressure overload. The presence and chamber localization of angiotensinogen mRNA was determined using Northern hybridization and S1 nuclease mapping analysis. Angiotensinogen mRNA, as determined by dot-blot hybridization analysis, was significantly increased in hypertrophied left ventricles at both 7 and 15 days after the surgery, when compared with sham-operated controls. The activity of the circulating renin-angiotensin system, as indexed by plasma renin activity was increased at 1 day following surgery [6.0 +/- 2.0 ng.ml-1.h-1 angiotensin I (control) vs. 41.8 +/- 10.9 ng.ml-1.h-1 angiotensin I (experimental)], but returned to control values by day 3 postoperatively.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.