Summary Two barley (Hordeum vulgare L.) cDNA clones (pBH6-12 and pBH6-17) were isolated from a cDNA library prepared from leaves 6 h after inoculation with Blumeria graminis f.sp. hordei (Bgh). The two transcripts accumulate strongly in response to Bgh, peaking around 6, 15-24 and 48-96 h after inoculation, concomitant with fungal penetration attempts, hypersensitive response and fungal growth. The encoded proteins, HvPR-17a and HvPR-17b, belong to a new family of plant pathogenesis-related proteins, designated 'PR-17'. The family also include NtPRp27 from tobacco (Okushima et al., 2000, Plant Mol. Biol.42, 479-488) and WCI-5 from wheat (Görlach et al., 1996, Plant Cell8, 629-643), responsive to viral and fungal infection, respectively. Antisera were raised to HvPR-17a and HvPR-17b, and the proteins exhibit apparent molecular weights of 26 and 24 kDa, respectively. They accumulate in the mesophyll apoplast following Bgh-inoculation, as well as in the leaf epidermis, the only tissue to be invaded by the fungus. Several homologous plant proteins exist, and a highly conserved part of the members of this new protein family show similarity to the active site and to the peptide-binding groove of the exopeptidase 'aminopeptidase N' from eukaryotes and the endopeptidase 'thermolysin' from bacteria.
We identified a wheat stripe rust (Puccinia striiformis) effector candidate (PEC6) with pattern-triggered immunity (PTI) suppression function and its corresponding host target. PEC6 compromised PTI host species-independently. In Nicotiana benthamiana, it hampers reactive oxygen species (ROS) accumulation and callose deposition induced by Pseudomonas fluorescens. In Arabidopsis, plants expressing PEC6 were more susceptible to Pseudomonas syringae pv. tomato (Pto) DC3000 ΔAvrPto/ΔAvrPtoB. In wheat, PEC6-suppression of P. fluorescens-elicited PTI was revealed by the fact that it allowed activation of effector-triggered immunity by Pto DC3000. Knocking down of PEC6 expression by virus-mediated host-induced gene silencing decreased the number of rust pustules, uncovering PEC6 as an important pathogenicity factor. PEC6, overexpressed in plant cells without its signal peptide, was localized to the nucleus and cytoplasm. A yeast two-hybrid assay showed that PEC6 interacts with both wheat and Arabidopsis adenosine kinases (ADKs). Knocking down wheat ADK expression by virus-induced gene silencing reduced leaf growth and enhanced the number of rust pustules, indicating that ADK is important in plant development and defence. ADK plays essential roles in regulating metabolism, cytokinin interconversion and methyl transfer reactions, and our data propose a model where PEC6 may affect one of these processes by targeting ADK to favour fungal growth.
Antibiosis is a key feature widely exploited to develop biofungicides based on the ability of biological control agents (BCAs) to produce fungitoxic compounds. A less recognised attribute of plant-associated beneficial microorganisms is their ability to stimulate the plant immune system, which may provide long-term, systemic self-protection against different types of pathogens. By using conventional antifungal in vitro screening coupled with in planta assays, we found antifungal and non-antifungal Bacillus strains that protected the ornamental plant Kalanchoe against the soil-borne pathogen Fusarium oxysporum in experimental and commercial production settings. Further examination of one antifungal and one non-antifungal strain indicated that high protection efficacy in planta did not correlate with antifungal activity in vitro. Whole-genome sequencing showed that the non-antifungal strain EC9 lacked the biosynthetic gene clusters associated with typical antimicrobial compounds. Instead, this bacterium triggers the expression of marker genes for the jasmonic and salicylic acid defence pathways, but only after pathogen challenge, indicating that this strain may protect Kalanchoe plants by priming immunity. We suggest that the stimulation of the plant immune system is a promising mode of action of BCAs for the development of novel biological crop protection products.
Psittacine beak and feather disease virus (PBFDV) and avian polyomavirus (APV) are the most common viral diseases in psittacine birds, both affecting feathers and physical appearance of birds. Between 2005 and 2009, a total of 269 samples were collected from birds presented at veterinary clinics, shelters and rescue centers of wildlife in Costa Rica. They belonged to 19 species of psittacine birds. The most representative species in the sample were Ara macao (157), Ara ambigua (37), Amazona autumnalis (24), Amazon ochrocephala (21) and Ara ararauna (8). A prevalence of 19.7% (53/269) for PBFDV and 4.8% (13/269) for APV was determined using Polymerase Chain Reaction (PCR). In 3.3% (9/269) of the birds mixed infections were detected. Statistical analysis determined that psittacines living in shelters and rescue centers had a greater risk to be positive to PBFDV and APV than birds that were presented at veterinary clinics, while only for PBFDV it was determined, that it is more likely to detect it in feathers than in blood. Finally, birds infected with PBFDV had 6.24 times more probability to become infected with APV, than non-infected birds. This is the first report of prevalence of PBFDV and APV in captive psittacines from Costa Rica.
Maize rayado fino marafivirus (MRFV) was mechanically transmitted to kernels of three Costa Rican maize cultivars by the vascular puncture technique. A transmission rate of up to 43·2% was obtained for cultivar HC-57. The rate of MRFV transmission to maize was possibly affected by the morphology of the kernel, which may influence physical access to the vascular tissue after water imbibition. Transmission to maize was confirmed by western blot and immunosorbent electron microscopy. By slight modifications of the procedure, MRFV was also transmitted to barley. This is the first report of MRFV infecting a species outside the supertribe Andropogonodae. Virus infection and replication in barley were confirmed by RT-PCR detection of MRFV RNA and by detection of the virus by ELISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.