Vδ2+ γδ T cells are semi-innate T cells that expand markedly following P. falciparum (Pf) infection in naïve adults, but are lost and become dysfunctional among children repeatedly exposed to malaria. The role of these cells in mediating clinical immunity (i.e. protection against symptoms) to malaria remains unclear. We measured Vδ2+ T cell absolute counts at acute and convalescent malaria timepoints (n = 43), and Vδ2+ counts, cellular phenotype, and cytokine production following in vitro stimulation at asymptomatic visits (n = 377), among children aged 6 months to 10 years living in Uganda. Increasing age was associated with diminished in vivo expansion following malaria, and lower Vδ2 absolute counts overall, among children living in a high transmission setting. Microscopic parasitemia and expression of the immunoregulatory markers Tim-3 and CD57 were associated with diminished Vδ2+ T cell pro-inflammatory cytokine production. Higher Vδ2 pro-inflammatory cytokine production was associated with protection from subsequent Pf infection, but also with an increased odds of symptoms once infected. Vδ2+ T cells may play a role in preventing malaria infection in children living in endemic settings; progressive loss and dysfunction of these cells may represent a disease tolerance mechanism that contributes to the development of clinical immunity to malaria.
Malaria remains a significant cause of morbidity and mortality worldwide, particularly in infants and children. Some studies have reported that exposure to malaria antigens in utero results in the development of tolerance, which could contribute to poor immunity to malaria in early life. However, the effector T cell response to pathogen-derived antigens encountered in utero, including malaria, has not been well characterized. Here, we assessed the frequency, phenotype, and function of cord blood T cells from Ugandan infants born to mothers with and without placental malaria. We found that infants born to mothers with active placental malaria had elevated frequencies of proliferating effector memory fetal CD4+ T cells and higher frequencies of CD4+ and CD8+ T cells that produced inflammatory cytokines. Fetal CD4+ and CD8+ T cells from placental malaria-exposed infants exhibited greater in vitro proliferation to malaria antigens. Malaria-specific CD4+ T cell proliferation correlated with prospective protection from malaria during childhood. These data demonstrate that placental malaria is associated with the generation of proinflammatory malaria-responsive fetal T cells. These findings add to our current understanding of fetal immunity and indicate that a functional and protective pathogen-specific T cell response can be generated in utero.
BackgroundMajor depressive disorder (MDD) is a common psychiatric complication of HIV/AIDS. While considerable research has been undertaken to understand the psychosocial risk factors of MDD, there is a paucity of data on its biological risk factors including immunological factors. To address this we undertook a study to investigate the association between MDD and pro-inflammatory cytokines and acute phase proteins among persons living with HIV/AIDS (PLWHA) in Uganda. We collected clinical and laboratory data on 201 PLWHA attending two HIV clinics in central and southwestern Uganda. Clinical data included DSM-IV based MDD diagnosis, while laboratory data included the concentrations of IL-6, TNF-α and CRP measured using ELISA. Multiple logistic linear regression analysis was used to determine which proteins were independently significantly associated with MDD controlling for study site, sex, age and highest educational attainment.ResultsThe prevalence of MDD was 62/201 (30.8%). Adjusting for confounders, the odds of MDD increased with increasing levels of IL-6 [each unit increase in IL-6 titres was associated with an aOR = 0.98 (95% CI, 0.97–0.99); p < 0.001]. Participants with low levels of TNF-α were at reduced risk of MDD compared to participants with no TNF-α [those with a TNF-α of 1- <50 pg/ml titres had an aOR = 0.35(95% CI,0.10–1.16)], but as the level of TNF-α increased, the risk of MDD increased, and in particular participants with high levels of TNF-α (of 500 or above) were at a significantly increased risk of MDD [e.g. those with a TNF-α of 500- < 1000 pg/ml titres had an aOR = 3.98 (95% CI,1.29–12.33)] compared to participants with no TNF-α. There was no evidence that MDD was associated with the level of CRP titres [aOR = 0.95 (0.78–1.15); p = 0.60)].ConclusionIn this study, the pro-inflammatory proteins IL-6 and TNF-α were significantly associated with MDD, while CRP was not.
BackgroundIn malaria-endemic areas, the first exposure to malaria antigens often occurs in utero when the fetal immune system is poised towards the development of tolerance. Children exposed to placental malaria have an increased risk of clinical malaria in the first few years of life compared to unexposed children. Recent work has suggested the potential of pregnancy-associated malaria to induce immune tolerance in children living in malaria-endemic areas. A study was completed to evaluate the effect of malaria exposure during pregnancy on fetal immune tolerance and effector responses.MethodsUsing cord blood samples from a cohort of mother-infant pairs followed from early in pregnancy until delivery, flow cytometry analysis was completed to assess the relationship between pregnancy-associated malaria and fetal cord blood CD4 and dendritic cell phenotypes.ResultsCord blood FoxP3+ Treg counts were higher in infants born to mothers with Plasmodium parasitaemia early in pregnancy (12–20 weeks of gestation; p = 0.048), but there was no association between Treg counts and the presence of parasites in the placenta at the time of delivery (by loop-mediated isothermal amplification (LAMP); p = 0.810). In contrast, higher frequencies of activated CD4 T cells (CD25+FoxP3−CD127+) were observed in the cord blood of neonates with active placental Plasmodium infection at the time of delivery (p = 0.035). This population exhibited evidence of effector memory differentiation, suggesting priming of effector T cells in utero. Lastly, myeloid dendritic cells were higher in the cord blood of infants with histopathologic evidence of placental malaria (p < 0.0001).ConclusionTogether, these data indicate that in utero exposure to malaria drives expansion of both regulatory and effector T cells in the fetus, and that the timing of this exposure has a pivotal role in determining the polarization of the fetal immune response.
Vγ9Vδ2 T cells rapidly respond to phosphoantigens produced by Plasmodium falciparum in an innate-like manner, without prior antigen exposure or processing. Vδ2 T cells have been shown to inhibit parasite replication in vitro and are associated with protection from P . falciparum parasitemia in vivo . Although a marked expansion of Vδ2 T cells is seen after acute malaria infection in naïve individuals, repeated malaria causes Vδ2 T cells to decline both in frequency and in malaria-responsiveness, and to exhibit numerous transcriptional and phenotypic changes, including upregulation of the Fc receptor CD16. Here we investigate the functional role of CD16 on Vδ2 T cells in the immune response to malaria. We show that CD16+ Vδ2 T cells possess more cytolytic potential than their CD16- counterparts, and bear many of the hallmarks of mature NK cells, including KIR expression. Furthermore, we demonstrate that Vδ2 T cells from heavily malaria-exposed individuals are able to respond to opsonized P . falciparum -infected red blood cells through CD16, representing a second, distinct pathway by which Vδ2 T cells may contribute to anti-parasite effector functions. This response was independent of TCR engagement, as demonstrated by blockade of the phosphoantigen presenting molecule Butyrophilin 3A1. Together these results indicate that Vδ2 T cells in heavily malaria-exposed individuals retain the capacity for antimalarial effector function, and demonstrate their activation by opsonized parasite antigen. This represents a new role both for Vδ2 T cells and for opsonizing antibodies in parasite clearance, emphasizing cooperation between the cellular and humoral arms of the immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.