A collagenolytic protease has been isolated from extracts of the hepatopancreas of the fiddler crab, Uca pugilator, and purified to homogeneity by a variety of chromatographic procedures. The enzyme acts both on native collagen fibrils and on collagen in solution and is capable of degrading the collagen molecule under conditions that do not denature the protein. Unlike the vertebrate collagenases the purified crab hepatopancreas collagenase also demonstrates specificities against synthetic substrates for mammalian trypsin and chymotrypsin. These latter enzymes, however, are incapable of cleaving the native collagen helix. In certain respects this collagenase resembles the vertebrate trypsins in
The amino acid sequence of a collagenolytic protease from the hepatopancreas of the fiddler crab, Uca pugilator, was determined from the structures of overlapping tryptic, chymotryptic, thermolytic, staphylococcal protease, and cyanogen bromide peptides together with automated sequencer analysis of the intact protein. Crab collagenase is a serine protease composed of 226 residues which is capable of degrading the native triple helix of collagen under physiological conditions. When aligned for optimal homology, crab collagenase displays 35% identity with bovine trypsin, 38% with bovine chymotrypsin B, and 32% with porcine elastase. The six half-cystinyl residues in crab collagenase correspond to those forming three of the five disulfide bonds in chymotrypsin. The residues forming the charge relay system of the active site of chymotrypsin (His-57, Asp-102, and Ser-195) are found in corresponding regions in crab collagenase, and the sequences around these residues are well conserved. The primary structure of crab collagenase is the first reported for a serine protease from crustacean hepatopancreas and the first reported for a serine protease possessing the unusual property of being able to degrade native helical collagen.
Low-temperature viscosity of engine oils is a key indication of a lubricant’s capacity to provide wear protection during starting and subsequent operation of an engine. Some 40 years ago the Cold Cranking Simulator (CCS) was developed to measure the low-temperature viscosity of engine oil with viscometric conditions similar to a starting engine. The importance of cranking viscosity has grown since the test was originally developed and is now one of two low-temperature viscosity measurements that define the SAE grades for engine oils. Previous studies evaluating viscosities determined by the CCS have focused on test precision and correlation to engine starting performance. This study evaluates the effects small offsets from the indicated temperature have on the measured apparent viscosity of engine oils. Interest in this topic was driven by the observation that some engine oil formulations have abnormally high variation in viscosity. All the low-temperature viscosity measurements were made in the CCS in accord with ASTM D 5293-04. A small temperature offset was achieved by adjusting the CCS temperature probe calibration so that the indicated test operating temperature was offset from the true temperature. The viscosity data were collected using automatic thermoelectrically cooled CCS instruments. Comparative viscosity data were collected on instruments using cold methanol to control the sample temperature. The oil samples in this study consisted of base oils, a selection of commercial engine oils of the API performance category SL, recent ASTM Interlaboratory Crosscheck Program (ILCP), and from the Low Temperature Engine Performance (LTEP) study which was conducted in the 1990s. The LTEP oils are of an earlier performance category and thus have a different composition than either the API SL commercial engine oils or the ASTM ILCP program oils. Results of this study show that when the CCS stator and sample are warmer than the indicated temperature, the measured viscosities are higher than when the viscosity is measured at the correct (true) temperature. As would be expected, the opposite response is seen when the offset is in the opposite direction. This response to the temperature offset is opposite of what would be traditionally expected—lower temperatures typically result in higher measured viscosities. As seen in the study, this is a result of the way the instrument is calibrated and not a fluid anomaly. Some of the API SL oils exhibited more than a 5 % change in measured viscosity from a 0.5°C shift in temperature. Base oils and synthetic formulations only had a change of around 1 % due to a 0.5°C shift in temperature. The samples of API SG oils have temperature sensitivity lower than the API SL oils tested. This study compares data obtained on instruments using two different methods of controlling sample temperature. For the samples evaluated in this program, the data indicated no relative bias between the two methods (thermoelectric and cold methanol) of stator temperature control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.