A recently characterised class of adhesive, high molecular weight glycoproteins is present on the surfaces of cells, in connective tissue matrices, and in extracellular fluids. These proteins may have important roles in cellular adhesion, malignant transformation, reticuloendothelial system function, and embryonic differentiation.
Abstract. We have compared the molecular specificities of the adhesive interactions of melanoma and fibroblastic cells with fibronectin. Several striking differences were found in the sensitivity of the two cell types to inhibition by a series of synthetic peptides modeled on the Arg-Gly-Asp-Ser (RGDS) tetrapeptide adhesion signal. Further evidence for differences between the melanoma and fibroblastic cell adhesion systems was obtained by examining adhesion to proteolytic fragments of fibronectin. Fibroblastic BHK cells spread readily on f13, a 75-kD fragment representing the RGDS-containing, "cell-binding" domain of fibronectin, but B16-F10 melanoma cells could not. The melanoma cells were able to spread instead on f9, a ll3-kD fragment derived from the large subunit of fibronectin that contains at least part of the type III connecting segment difference region (or "V" region); f7, a fragment from the small fibronectin subunit that lacks this alternatively spliced polypeptide was inactive. Monoclonal antibody and f13 inhibition experiments confirmed the inability of the melanoma cells to use the RGDS sequence; neither molecule affected melanoma cell spreading, but both completely abrogated fibroblast adhesion. By systematic analysis of a series of six overlapping synthetic peptides spanning the entire type III connecting segment, a novel attachment site was identified in a peptide near the COOH-terminus of this region. The tetrapeptide sequence Arg-Glu-Asp-Val (REDV), which is somewhat related to RGDS, was present in this peptide in a highly hydrophilic region of the type III connecting segment. REDV appeared to be functionally important, since this synthetic tetrapeptide was inhibitory for melanoma cell adhesion to fibronectin but was inactive for fibroblastic cell adhesion. REDV therefore represents a novel adhesive recognition signal in fibronectin that possesses cell type specificity. These results suggest that, for some cell types, regulation of the adhesion-promoting activity of fibronectin may occur by alternative mRNA splicing.
Adhesive interactions between cells and the extracellular matrix occur at several stages of metastasis. Such interactions might be inhibited by synthetic peptide probes derived from the cell-binding regions of matrix molecules. Gly-Arg-Gly-Asp-Ser (GRGDS) is a pentapeptide sequence that appears to be critical for cell interaction with fibronectin. Coinjection of GRGDS with B16-F10 murine melanoma cells dramatically inhibited the formation of lung colonies in C57BL/6 mice. Two closely related control peptides, in which specific amino acids within the GRGDS sequence were transposed or substituted, displayed little or no activity. Inhibition by GRGDS was dose-dependent, noncytotoxic, and did not result from an impairment of cellular tumorigenicity. GRGDS may function by inhibiting tumor cell retention in the lung since radiolabeled B16-F10 tumor cells injected with the peptide were lost at a substantially greater rate than control cells.
The adhesive glycoprotein fibronectin and integrin receptors appear to play important roles in the progression of metastatic disease. Fibronectin is a multifunctional extracellular glycoprotein that has at lest two independent cell adhesion regions with different receptor specificities. The cell adhesive region in the central portion of fibronectin is comprised of at least two minimal amino acid sequences--an Arg-Gly-Asp (RGD) sequence and a Pro-His-Ser-Arg-Asn (PHSRN) sequence--which function in synergy. Another cell adhesive region is located near the carboxy-terminus in the alternatively spliced IIICS module. The critical minimal sequences for this region Leu-Asp-Val (LDV) and Arg-Glu-Asp-Val (REDV) which function in an additive rather than synergistic fashion. Integrins are heterodimeric, transmembrane cell adhesion receptors for fibronectin and other extracellular matrix molecules. Several different integrins bind to fibronectin. The alpha 5 beta 1 fibronectin-specific integrin binds to the central RGD/PHSRN site. The alpha 4 beta 1 integrin binds to the IIICS site. Fibronectin-integrin interactions are important in tumor cell migration, invasion, and metastasis. In addition to promoting cell adhesion to the extracellular matrix, these proteins may also function in chemotaxis and control of proliferation. Peptide and antibody inhibitors of fibronectin and integrin functions have been shown to be effective inhibitors of metastasis, and are potentially important reagents for the study and control of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.