Anxiety is characterized by excessive attention to threatening information, leading to impaired working memory (WM) performance and elevated anxious thoughts. Preliminary research indicates that individuals with PTSD show particular difficulty with WM in emotional contexts (Schweizer et al., 2011). Although several studies show that computerized training can improve WM capacity for anxious individuals (Owens et al., 2013; Schweizer et al., 2011 & 2013), there has been very little research on WM training for PTSD or with Veterans (Saunders et al., 2015). In a pilot randomized trial, we assigned Veterans with elevated PTSD symptoms to an online emotional WM training, either adaptive (n-back; n=11) or a less potent training (1-back; n=10). Overall, both groups showed significant decreases in PTSD symptoms. The n-back group showed a trend of outperforming the 1-back group in improving reexperiencing symptoms (which are likely to be associated with impaired WM functioning). This population anecdotally found the intervention quite challenging, which may be why even the less potent 1-back was still helpful. These preliminary findings justify the effort for developing new WM-focused PTSD intervention for complex, vulnerable populations, particularly as online training can improve accessibility.
Background: The hippocampus plays a central role in post-traumatic stress disorder (PTSD) pathogenesis, and the majority of neuroimaging research on PTSD has studied the hippocampus in its entirety. Although extensive literature demonstrates changes in hippocampal volume are associated with PTSD, fewer studies have probed the relationship between symptoms and the hippocampus’ functionally and structurally distinct subfields. We utilized data from a longitudinal study examining post-trauma outcomes to determine whether hippocampal subfield volumes change post-trauma and whether specific subfields are significantly associated with, or prospectively related to, PTSD symptom severity. As a secondary aim, we leveraged our unique study design sample to also investigate reliability of hippocampal subfield volumes using both cross-sectional and longitudinal pipelines available in FreeSurfer v6.0 . Methods: Two-hundred and fifteen traumatically injured individuals were recruited from an urban Emergency Department. Two-weeks post-injury, participants underwent two consecutive days of neuroimaging (time 1: T1, and time 2: T2) with magnetic resonance imaging (MRI) and completed self-report assessments. Six-months later (time 3: T3), participants underwent an additional scan and were administered a structured interview assessing PTSD symptoms. First, we calculated reliability of hippocampal measurements at T1 and T2 (automatically segmented with FreeSurfer v6.0). We then examined the prospective (T1 subfields) and cross-sectional (T3 subfields) relationship between volumes and PTSD. Finally, we tested whether change in subfield volumes between T1 and T3 explained PTSD symptom variability. Results: After controlling for sex, age, and total brain volume, none of the subfield volumes (T1) were prospectively related to T3 PTSD symptoms nor were subfield volumes (T3) associated with current PTSD symptoms (T3). Tl – T2 reliability of all hippocampal subfields ranged from good to excellent (intraclass correlation coefficient (ICC) values > 0.83), with poorer reliability in the hippocampal fissure. Conclusion: Our study was a novel examination of the prospective relationship between hippocampal subfield volumes in relation to PTSD in a large trauma-exposed urban sample. There was no significant relationship between subfield volumes and PTSD symptoms, however, we confirmed FreeSurfer v6.0 hippocampal subfield segmentation is reliable when applied to a traumatically-injured sample, using both cross-sectional and longitudinal analysis pipelines. Although hippocampal subfield volumes may be an important marker of individual variability in PTSD, findings are likely conditional on the timing of the measurements (e.g. acute or chronic post-trauma periods) and analysis strategy (e.g. cross-sectional or prospective).
Nearly 14 percent of Americans live in a socioeconomically disadvantaged neighborhood. Lower individual socioeconomic position (iSEP) has been linked to increased exposure to trauma and stress, as well as to alterations in brain structure and function; however, the neural effects of neighborhood SEP (nSEP) factors, such as neighborhood disadvantage, are unclear. Using a multi-modal approach with participants who recently experienced a traumatic injury ( N = 185), we investigated the impact of neighborhood disadvantage, acute post-traumatic stress symptoms, and iSEP on brain structure and functional connectivity at rest. After controlling for iSEP, demographic variables, and acute PTSD symptoms, nSEP was associated with decreased volume and alterations of resting-state functional connectivity in structures implicated in affective processing, including the insula, ventromedial prefrontal cortex, amygdala, and hippocampus. Even in individuals who have recently experienced a traumatic injury, and after accounting for iSEP, the impact of living in a disadvantaged neighborhood is apparent, particularly in brain regions critical for experiencing and regulating emotion. These results should inform future research investigating how various levels of socioeconomic circumstances may impact recovery after a traumatic injury as well as policies and community-developed interventions aimed at reducing the impact of socioeconomic stressors.
Key Points Question Are experiences of racial discrimination associated with altered resting-state connectivity patterns of salience network nodes? Findings In this cross-sectional study of 102 Black adults, more experiences of racial discrimination were associated with altered connectivity of the amygdala and anterior insula, even after adjusting for annual household income, lifetime trauma exposure, and current posttraumatic stress disorder symptoms. Meaning These findings suggest that experiencing racial discrimination is associated with modifications to known neural correlates of vigilance, suggesting a viable mechanism by which racism negatively affects mental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.