The CCN proteins are key signalling and regulatory molecules involved in many vital biological functions, including cell proliferation, angiogenesis, tumourigenesis and wound healing. How these proteins influence such a range of functions remains incompletely understood but is probably related to their discrete modular nature and a complex array of intra- and inter-molecular interactions with a variety of regulatory proteins and ligands. Although certain aspects of their biology can be attributed to the four individual modules that constitute the CCN proteins, recent results suggest that some of their biological functions require cooperation between modules. Indeed, the modular structure of CCN proteins provides important insight into their structure–function relationships.
Pathogenic bacteria are known to possess an arsenal of toxins and effectors that assist them in targeting and killing their host cells. The ADP-ribosylating toxins (ADPRTs) are a large family of dangerous and potentially lethal toxins. Examples of these toxins can be found in a diverse range of bacterial pathogens and they are the principal causative agents in many serious diseases including cholera, whooping cough and diphtheria. ADPRTs, as the name would suggest, break NAD into its component parts (nicotinamide and ADP-ribose) before selectively linking the ADP-ribose moiety to their protein target (Fig. 1). In the majority of these toxins, the targets are key regulators of cellular function and interference in their activity, caused by ADP-ribosylation, leads to serious deregulation of key cellular processes and in most cases, eventual cell death.This large family of toxins has been extensively studied with many structures of individual members determined. These include: diphtheria toxin (1TOX) The ADP-ribosylating toxins (ADPRTs) are a family of toxins that catalyse the hydrolysis of NAD and the transfer of the ADP-ribose moiety onto a target. This family includes many notorious killers, responsible for thousands of deaths annually including: cholera, enterotoxic Escherichia coli, whooping cough, diphtheria and a plethora of Clostridial binary toxins. Despite their notoriety as pathogens, the ADPRTs have been extensively used as cellular tools to study and elucidate the functions of the small GTPases that they target. There are four classes of ADPRTs and at least one structure representative of each of these classes has been determined. They all share a common fold and several motifs around the active site that collectively facilitate the binding and transfer of the ADP-ribose moiety of NAD to their protein targets. In this review, we present an overview of the physiology and cellular qualities of the bacterial ADPRTs and take an in-depth look at the structural motifs that differentiate the different classes of bacterial ADPRTs in relation to their function.
The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach.
C3 exoenzymes (members of the ADP-ribosyltranferase family) are produced by Clostridium botulinum (C3bot1 and -2), Clostridium limosum (C3lim), Bacillus cereus (C3cer), and Staphylococcus aureus (C3stau1-3). These exoenzymes lack a translocation domain but are known to specifically inactivate Rho GTPases in host target cells. Here, we report the crystal structure of C3bot1 in complex with RalA (a GTPase of the Ras subfamily) and GDP at a resolution of 2.66 Å. RalA is not ADP-ribosylated by C3 exoenzymes but inhibits ADP-ribosylation of RhoA by C3bot1, C3lim, and C3cer to different extents. The structure provides an insight into the molecular interactions between C3bot1 and RalA involving the catalytic ADP-ribosylating turn-turn (ARTT) loop from C3bot1 and helix ␣4 and strand 6 (which are not part of the GDP-binding pocket) from RalA. The structure also suggests a molecular explanation for the different levels of C3-exoenzyme inhibition by RalA and why RhoA does not bind C3bot1 in this manner.ADP-ribosylation ͉ protein-protein interaction ͉ x-ray crystallography B acteria produce many enzymes that show extraordinary specificity for mammalian intracellular proteins. The specificity of these bacterial enzymes has not only made them a valuable tool for elucidating the cellular functions of their targets but has also increased our understanding of protein interactions. Clostridium botulinum is no exception, producing two classes of enzymes that have very specific protein targets, the neurotoxins A-G and the ADP-ribosyltransferases C2, C3bot1, and C3bot2. C2 and C3bot are part of a larger family of ADP-ribosylating toxins (1, 2), including diphtheria toxin and cholera toxin, which cleave NAD and transfer ADP-ribose to target proteins. Although the members of this family have homologous enzymatic domains and similar active sites, these toxins ADP-ribosylate and, therefore, disable a range of cellular targets.
The CCN (cyr61, ctgf, nov) proteins (CCN1-6) are an important family of matricellular regulatory factors involved in internal and external cell signaling. They are central to essential biological processes such as adhesion, proliferation, angiogenesis, tumorigenesis, wound healing, and modulation of the extracellular matrix. They possess a highly conserved modular structure with four distinct modules that interact with a wide range of regulatory proteins and ligands. However, at the structural level, little is known although their biological function(s) seems to require cooperation between individual modules. Here we present for the first time structural determinants of two of the CCN family members, CCN3 and CCN5 (expressed in Escherichia coli), using small angle x-ray scattering. The results provide a description of the overall molecular shape and possible general three-dimensional modular arrangement for CCN proteins. These data unequivocally provide insight of the nature of CCN protein(s) in solution and thus important insight into their structure-function relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.