Vascular endothelial growth factor (VEGF) is essential for developmental and pathological angiogenesis. Here we show that in the absence of any pathological insult, autocrine VEGF is required for the homeostasis of blood vessels in the adult. Genetic deletion of vegf specifically in the endothelial lineage leads to progressive endothelial degeneration and sudden death in 55% of mutant mice by 25 weeks of age. The phenotype is manifested without detectable changes in the total levels of VEGF mRNA or protein, indicating that paracrine VEGF could not compensate for the absence of endothelial VEGF. Furthermore, wild-type, but not VEGF null, endothelial cells showed phosphorylation of VEGFR2 in the absence of exogenous VEGF. Activation of the receptor in wild-type cells was suppressed by small molecule antagonists but not by extracellular blockade of VEGF. These results reveal a cell-autonomous VEGF signaling pathway that holds significance for vascular homeostasis but is dispensable for the angiogenic cascade.
Many patients with Huntington's disease (HD) exhibit disturbances in their daily cycle of sleep and wake as part of their symptoms. These patients have difficulty sleeping at night and staying awake during the day, which has a profound impact on the quality of life of the patients and their care-givers. In the present study, we examined diurnal and circadian rhythms of four models of HD including the BACHD, CAG 140 knock-in and R6/2 CAG 140 and R6/2 CAG 250 lines of mice. The BACHD and both R6/2 lines showed profound circadian phenotypes as measured by wheel-running activity. Focusing on the BACHD line for further analysis, the amplitude of the rhythms in the BACHD mice declined progressively with age. In addition, the circadian regulation of heart rate and body temperature in freely behaving BACHD mice were also disrupted. Furthermore, the distribution of sleep as well as the autonomic regulation of heart rate was disrupted in this HD model. To better understand the mechanistic underpinnings of the circadian disruption, we used electrophysiological tools to record from neurons within the central clock in the suprachiasmatic nucleus (SCN). The BACHD mice exhibit reduced rhythms in spontaneous electrical activity in SCN neurons. Interestingly, the expression of the clock gene PERIOD2 was not altered in the SCN of the BACHD line. Together, this data is consistent with the hypothesis that the HD mutations interfere with the expression of robust circadian rhythms in behavior and physiology. The data raise the possibility that the electrical activity within the central clock itself may be altered in this disease.
Abstract-c-Myc, a protooncogene, mediates both proliferative and cellular growth in many cell types. Although not expressed in the adult heart under normal physiological conditions, Myc expression is rapidly upregulated in response to hypertrophic stimuli. Although Myc is capable of sustaining hyperplastic growth in fetal myocytes, the effects of its re-expression in adult postmitotic myocardium and its role in mediating cardiac hypertrophy are unknown.
Null mutation of dystrophin causes the lethal pathology of Duchenne muscular dystrophy (DMD) in which there is progressive pathology of skeletal and cardiac muscles. A large proportion of DMD patient deaths are attributable to cardiac dysfunction associated with ventricular fibrosis, arrhythmias and conduction abnormalities, although the relationships between the dystrophin mutation and the cardiac defects are unknown. Here, we tested whether cardiac pathology in dystrophin-deficient mdx mice can be corrected by the elevated production of nitric oxide (NO) by the myocardium. Dystrophin-deficient mdx mice were produced in which there was myocardial expression of a neuronal nitric oxide synthase (nNOS) transgene. Expression of the transgene prevented the progressive ventricular fibrosis of mdx mice and greatly reduced myocarditis. Electrocardiographs (ECG) attained by radiotelemetry of freely ambulatory mice showed that mdx mice displayed cardiac abnormalities that are characteristic of DMD patients, including deep Q-waves, diminished S:R ratios, polyphasic R-waves and frequent premature ventricular contractions. All of these ECG abnormalities in mdx mice were improved or corrected by nNOS transgene expression. In addition, defects in mdx cardiac autonomic function, which were reflected by decreased heart rate variability, were significantly reduced by nNOS transgene expression. These findings indicate that increasing NO production by dystrophic hearts may have therapeutic value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.