We demonstrate a low-profile holographic imaging system at millimeter wavelengths based on an aperture composed of frequency-diverse metasurfaces. Utilizing measurements of spatially-diverse field patterns, diffraction-limited images of human-sized subjects are reconstructed. The system is driven by a single microwave source swept over a band of frequencies (17.5–26.5 GHz) and switched between a collection of transmit and receive metasurface panels. High fidelity image reconstruction requires a precise model for each field pattern generated by the aperture, as well as the manner in which the field scatters from objects in the scene. This constraint makes scaling of computational imaging systems inherently challenging for electrically large, coherent apertures. To meet the demanding requirements, we introduce computational methods and calibration approaches that enable rapid and accurate imaging performance.
Emerging metasurface antenna technology enables flexible and low cost massive multiple-input multiple-output (MIMO) millimeter-wave (mmW) imaging for applications such as personnel screening, weapon detection, reconnaissance, and remote sensing. This work proposes an orthogonal coded active illumination (OCAI) approach which utilizes simultaneous, mutually orthogonal coded transmit signals to illuminate the scene being imaged. It is shown that OCAI is robust to code amplitude and code phase imbalance introduced by imperfect transmitter (TX) and receiver (RX) hardware, while also mitigating common impairments of low cost direct-conversion receivers, such as RX self-jamming and DC offsets. The coding gain offered by this approach improves imager signal to noise ratio (SNR) performance by up to 15 dB using codes of symbol length 32. We present validation images of resolution targets and a humanscale mannequin, obtained with a custom massive-MIMO mmW imager having 24 simultaneous TX and 72 simultaneous RX operating in the K-band (17.5 GHz to 26.5 GHz). The imager leverages both spatial coding via frequency diverse metasurface antennas, and temporal coding via OCAI of the scene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.