Perennial herbaceous plants such as switchgrass (Panicum virgatum L.) are being evaluated as cellulosic bioenergy crops. Two major concerns have been the net energy efficiency and economic feasibility of switchgrass and similar crops. All previous energy analyses have been based on data from research plots (<5 m 2 ) and estimated inputs. We managed switchgrass as a biomass energy crop in field trials of 3-9 ha (1 ha ؍ 10,000 m 2 ) on marginal cropland on 10 farms across a wide precipitation and temperature gradient in the midcontinental U.S. to determine net energy and economic costs based on known farm inputs and harvested yields. In this report, we summarize the agricultural energy input costs, biomass yield, estimated ethanol output, greenhouse gas emissions, and net energy results. Annual biomass yields of established fields averaged 5.2 -11.1 Mg⅐ha ؊1 with a resulting average estimated net energy yield (NEY) of 60 GJ⅐ha ؊1 ⅐y ؊1 . Switchgrass produced 540% more renewable than nonrenewable energy consumed. Switchgrass monocultures managed for high yield produced 93% more biomass yield and an equivalent estimated NEY than previous estimates from human-made prairies that received low agricultural inputs. Estimated average greenhouse gas (GHG) emissions from cellulosic ethanol derived from switchgrass were 94% lower than estimated GHG from gasoline. This is a baseline study that represents the genetic material and agronomic technology available for switchgrass production in 2000 and 2001, when the fields were planted. Improved genetics and agronomics may further enhance energy sustainability and biofuel yield of switchgrass.agriculture ͉ bioenergy ͉ biomass ͉ biomass energy ͉ greenhouse gas A renewable biofuel economy is projected as a pathway to reduce reliance on fossil fuels, reduce greenhouse gas (GHG) emissions, and enhance rural economies (1). Ethanol is the most common biofuel in the U.S. and is projected to increase in the short term because of the voluntary elimination of methyl tertiary butyl ether in conventional gasoline and in the long term because of U.S. government mandates (2, 3). Maize or corn (Zea mays) grain and other cereals such as sorghum (Sorghum bicolor) are the primary feedstock for U.S. ethanol production, but competing feed and food demands on grain supplies and prices will eventually limit expansion of grain-ethanol capacity. An additional feedstock source for producing ethanol is the lignocellulosic components of plant biomass, from which ethanol can be produced via saccrification and fermentation (4). Dedicated perennial energy crops such as switchgrass, crop residues, and forestry biomass are major cellulosic ethanol sources that could potentially displace 30% of our current petroleum consumption (5).Net energy production has been used to evaluate the energy efficiency of ethanol derived from both grain and cellulosic biomass (6). Typically, studies have used net energy values (NEV), net energy ratios, and net energy yield (NEY) and have compared biofuel output to petroleum requ...
The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatment (dissolution and precipitation of cellulose by anti-solvent) switchgrass exhibited reduced cellulose crystallinity, increased surface area, and decreased lignin content compared to dilute acid pretreatment. Pretreated material was characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and chemistry methods. Ionic liquid pretreatment enabled a significant enhancement in the rate of enzyme hydrolysis of the cellulose component of switchgrass, with a rate increase of 16.7-fold, and a glucan yield of 96.0% obtained in 24h. These results indicate that ionic liquid pretreatment may offer unique advantages when compared to the dilute acid pretreatment process for switchgrass. However, the cost of the ionic liquid process must also be taken into consideration.
A system for identifying and quantifying the stages of growth and development of perennial forage grasses was developed. The system consists of a universal set of morphological descriptors for forage and range grasses and a continuous numerical index. The life cycle of individual grass tillers is divided into five primary growth stages (i) germination, (ii) vegetative, (iii) elongation, (iv) reproductive, and (v) seed ripening. Substages corresponding to specific morphological events are defined within each primary stage. Each growth stage consists of a primary and secondary stage and has both a mnemonic code and numerical index associated with it. The codes were designed to be easily memorized and are useful for applying the system in the field. The numerical index is included so that the stages can be expressed quantitatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.