Biochars have potential to provide agricultural and environmental benefits such as increasing soil carbon sequestration, crop yield, and soil fertility while reducing greenhouse gas (GHG) emissions and nitrogen leaching. However, whether these effects will sustain for the long-term is still unknown. Moreover, these effects were observed mostly in highly weathered (sub-) tropical soils with low pH and soil organic carbon (SOC). The soils in northern colder boreal regions have typically higher SOC and undergo continuous freeze-thaw cycles. Therefore, effects of biochars in these regions may be different from those observed in other climates. However, only a few biochar studies have been conducted in boreal regions. We aimed to assess the long-term effects of biochars on GHG emissions, yield-normalized non-CO2 GHG emissions (GHGI), and N dynamics in boreal soils. For this, we collected data from four existing Finnish biochar field experiments during 2018 growing season. The experiments were Jokioinen (Stagnosol), Qvidja (Cambisol), Viikki-1 (Stagnosol), and Viikki-2 (Umbrisol), where biochars were applied, 2, 2, 8, and 7 years before, respectively. The GHG emissions, crop yield, soil mineral N, and microbial biomass were measured from all fields, whereas, additional measurements of plant N contents and N leaching were conducted in Qvidja. Biochars increased CO2 efflux in Qvidja and Viikki-2, whereas, there were no statistically significant effects of biochars on the fluxes of N2O or CH4, but in Qvidja, biochars tended to reduce N2O fluxes at the peak emission points. The tendency of biochars to reduce N2O emissions seemed higher in soils with higher silt content and lower initial soil carbon. We demonstrated the long-term effects of biochar on increased crop yield by 65% and reduced GHGI by 43% in Viikki-2. In Qvidja, the significant increment of plant biomass, plant N uptake, nitrogen use efficiency, and crop yield, and reduction of NO3−–N leaching by the spruce biochar is attributed to its ability to retain NO3−–N, which could be linked to its significantly higher specific surface area. The ability of the spruce biochar to retain soil NO3−–N and hence to reduce N losses, has implications for sustainable management of N fertilization.
Organic soil amendments such as manure, biochar and compost are among the most efficient and widely used methods to increase soil carbon sequestration in agricultural soils. Even though their benefits are well known, many wood-derived materials are not yet utilized in Nordic agriculture due to a lack of incentives and knowledge of their effects in the local climate. We studied greenhouse gas exchange, plant growth and soil properties of a clay soil cultivated with oat in southern Finland in an extremely dry year. Two years earlier, the field was treated with three ligneous soil amendments—lime-stabilized fiber from the pulp industry, willow biochar and spruce biochar—which we compared against fertilized and non-fertilized controls. We found that the soil amendments increased porosity and the mean soil water holding capacity, which was most noticeable in plots amended with spruce biochar. There was a trend indicating that the mean yield and overall biomass production were larger in plots with soil amendments; however, the difference to unamended control was seldom significant due to the high variance among replicates. Manual chamber measurements revealed that carbon dioxide and methane exchange rates were reduced most probably by the exceptionally hot and dry weather conditions, but no differences could be found between the amended and unamended treatments. The nitrous oxide emissions were significantly smaller from the vegetated soil amended with willow biochar compared with the unamended control. Emissions from non-vegetated soil, representing heterotrophic respiration, were similar but without significant differences between treatments. Overall, the studied soil amendments indicated positive climatic impact two years after their application, but further research is needed to conclusively characterize the specific effects of organic soil amendments on processes affecting greenhouse gas exchange and plant growth.
Biochar application has been shown to benefit soil fertility and to reduce greenhouse gas emissions, thus promoting sustainable and climate-smart agriculture. An important aspect of that sustainability is related to nitrogen availability, which contributes to crop yields but may also cause negative environmental consequences, such as soil nitrous oxide emissions, or leaching of nitrate, and subsequent eutrophication of water systems in the catchment area. In this study, we present results outlining the retention and release of nitrogen by biochar and its effects on nitrogen availability to plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.