In view of renewed interest in the lens epithelium as the initiation site for cataract development, it seemed timely to review recent studies which appear to establish UV damage in the lens epithelium as the cause of UV cataract. While UV photons can and do interact with lens proteins in the cortex and nucleus, experimental results from cultured lenses and tissue cultured epithelial cells also demonstrate both mutagenic and cytotoxic effects in the epithelium. This minireview examines UV-induced changes in lens physiology that appear to follow epithelial cell damage, including inactivation of critical enzymes of transport and metabolic processes. Changes in membrane function include altered cation transport, increased permeability, and altered biosynthesis. One potential scenario for the propagation of damage from the epithelium to the underlying fiber cells includes calcium elevation, an early event in cataract development and critical to many physiological processes.
Cultured rabbit lenses were irradiated with UV (311 nm peak; 295-340 nm) for 30 to 60 min. The entire spectrum lies in the near-UV, the major component is UVB, with a minor portion (25%) of UVA, and is henceforth referred to as near-UV(B). Posterior irradiation caused no cataract and no significant ionic imbalances compared to anterior irradiation, which caused opacification and marked changes in sodium and calcium concentrations. Anterior irradiation also resulted in reduced Na/K-ATPase activity in the epithelium. ATPase activity was not immediately inhibited; rather, only after culture was enzyme activity reduced. The concentration of reduced glutathione (GSH) decreased rapidly in the epithelium and more slowly in the underlying lens fibers. Loss of GSH was more rapid and extensive when irradiation occurred in the presence of oxygen. Irradiation under anaerobic conditions resulted in opacification but was considerably less extensive than when irradiation of lenses occurred in the presence of 7% oxygen. Near-UV(B) damage following anaerobic irradiation and 20 hrs of culture resulted in an increase in sodium levels and loss of GSH; calcium levels were not significantly elevated. Since irradiation of tryptophan solutions produced small amounts of hydrogen peroxide, the possibility of hydrogen peroxide-mediated damage was investigated but no role could be substantiated. Peroxide detoxification by the epithelium of near-UV(B) cataracts was observed, as measured by its ability to eliminate hydrogen peroxide added as a bolus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.