The hypothesis that cell primary cilium is solely responsible for the flow-induced Ca2+ response in MDCK cells was tested by removal of the cilia from mature, responsive cells. Incubation of the cells with 4 mM chloral hydrate for 68 hours resulted in the complete loss of the primary cilia and in disorganization of microtubules, as visualized by immunofluorescence. When intracellular Ca2+ concentration was measured with Fluo-4, the elevation that normally accompanies an increase in fluid flow was abolished after 20 hours exposure to chloral hydrate. At this time, the primary cilia still remained attached to the cells but had become twisted and flexible. Twenty-four hours after return of the deciliated cells to normal medium, intracellular microtubule organization appeared normal, but primary cilia had not yet been expressed. The cells failed to increase intracellular Ca2+ in response to fluid flow until after they had been in normal medium for 120 hours, at which time the primary cilia were 3-4 microm long. Chloral hydrate did not impair the Ca2+ mobilization machinery, as the Ca2+ response to mechanical contact and the spread to neighboring cells was unaffected by the drug. We conclude that the primary cilium is the only sensor for the flow-induced Ca2+ response in MDCK cells and estimate that a single mechanically sensitive channel in the cilium could provide the requisite Ca2+ influx.
The primary cilium, an organelle largely ignored by physiologists, functions both as a mechano-sensor and a chemo-sensor in renal tubular epithelia. This forgotten structure is critically involved in the determination of left-right sidedness during development and is a key factor in the development of polycystic kidney disease, as well as a number of other abnormalities. This review provides an update of our current understanding about the function of primary cilia. Much new information obtained in the past five years has been stimulated, in part, by discoveries of the primary cilium's key role in the genesis of polycystic kidney disease as well as its involvement in determination of left-right axis asymmetry. Here we focus on the various functions of the primary cilium rather than on its role in pathology.
The primary cilium is mechanically sensitive and serves as a flow sensor in cultured renal epithelia. Bending the cilium by mechanical means or flow causes a large, prolonged transient increase in intracellular calcium. The mechanically sensitive protein in the cilium is a polycystin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.