Study results identify candidate gene expression correlates of successful PTSD treatment, providing guidelines for the design of further studies aimed at exploring the epigenetic effects of EFT.
Objective: This study assessed the potential influence of biofield treatment on cultured human cancer cells and whether such influence was affected by varying the duration of the treatment (dose) or the distance between the biofield practitioner and the target cells. Design: Biofield treatment dosage was assessed from a short distance (0.25 meters) in three independent experiments involving 1, 2, or 5 treatments, along with another set of three independent and comparable mock experiments. Biofield treatment distance was assessed at 0.25, 25, and * 2000 meters involving two treatments in three independent experiments along with another set of three mock experiments. Intervention: Biofield treatments were delivered by a highly acclaimed biofield practitioner with the intention of diminishing growth of the cells or inducing cancer-cell death. Outcome measure: Cell viability was quantified 20 hours after treatments, using a spectrophotometric assay for live-cell counting. The dependent measure for each experiment was the log ratio of the cell viability values of treated samples (biofield or mock) over the values of untreated control samples. Results: A trend of decreasing cell viability with increasing biofield dose was evident in the first set of experiments assessing dose-response; however, no such effect was evident in the second set of experiments evaluating biofield treatment distance. Mock experiments yielded relatively stable viability ratios in both sets of experiments. Linear regression analysis and hypothesis testing of the data taken as a whole did not yield statistical significance at p < 0.05. Conclusions: These results represent the first indication of a biofield treatment dose-response in a controlled laboratory setting. The data are inconclusive because of the inability of reproduce the cellular response in a replicate experiment.
Diffuse brain invasion contributes to the poor prognosis for patients with gliomas. Analyzing glioma cell migration in vitro, we have demonstrated the spontaneous shedding of anucleate cell fragments that separate from glioma cell bodies and maintain viability from hours to days. Unlike previously described cell fragments that are released from cells as diffusible vectors, glioma cell fragments are independently motile. We used computerized time-lapse microscopy to characterize the formation of these independent motile microplasts (IMMPs) in human cell cultures derived from the most highly invasive glial tumor, glioblastoma. IMMPs were larger than previously described cell fragments, ranging in size from approximately 2% to nearly half of the area of their parent cells. Complex cell-like behaviors-including establishment of polarity, extension of lamellipodia and filopodia, and change in direction of movement-remained intact in IMMPs. The average direction and velocity of the IMMPs were indistinguishable from those of their parent cells. IMMPs formed at a significantly higher rate in glioma cell lines rendered more invasive by overexpression of invasion-related genes than in vector-transfected controls. The correlation with cell invasiveness indicates that IMMP formation may be related to the cell-invasive phenotype. Further investigation will determine whether IMMPs represent a novel addition to the growing list of viable cell fragments with biological relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.