Magma degassing models typically invoke volatile depletion of a single parental melt, with permeable loss of exsolved gas having served for many years as the paradigm for the transition from volatile-rich, explosive eruptions to volatile-depleted lava flows. These degassing models are guided by measurements of H 2 O, CO 2 , and hydrogen isotope variations retained in melt that quenched to glass, but the existing models are not uniquely constrained by the data. There also remains uncertainty surrounding the origin and significance of volcanic glass fragments. We show that individual obsidian pyroclasts from Mono Craters, California (USA), are heterogeneous in dissolved H 2 O and CO 2 , suggesting that clasts are assembled from juvenile melt and rewelded ash during magma ascent. This is in contrast to the conventional view that clasts are chemically homogeneous and sample the chilled, glassy margins of conduit walls. The new measurements of dissolved H 2 O and CO 2 help reconcile existing open-system degassing models used to explain elevated CO 2 /H 2 O ratios, provide time scales based on diffusion modeling for pyroclast formation, and show that magma does not necessarily lose volatiles monotonically during ascent-driven decompression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.