We have developed an in vitro porcine eye model based on a biomicroscope, to simulate a clinical situation for IOP measurement on enucleated eyes. The aims of this study were to evaluate the model and to apply and compare Goldmann applanation tonometry (GAT) and applanation resonance tonometry (ART) measurements in porcine eyes. The GAT measurement (IOPGAT) showed a lower pressure, mean - 14.0 mm Hg (SD = 1.7 mm Hg) as compared with the reference pressure. For in vitro measurement with GAT on porcine eyes the linear calibration was IOP = 1.14 IOPGAT + 12.5 mm Hg (R2 = 0.99, p < 0.001, n = 280, four eyes). ART measurements correlated significantly to reference IOP, R = 0.86 (p < 0.001, n = 252, six eyes), with a mean difference of 5.4 mm Hg (SD = 6.7 mm Hg). GAT could only be used on porcine eyes if the IOP exceeded 13 mm Hg. Evaluation of the ART in this in vitro model showed position dependence for the sensor. To facilitate centre positioning a guiding tool is suggested. Porcine eyes are a possible substitute for human eyes in in vitro models for pre-clinical evaluation of new tonometry methods.
Excimer laser surgery, to correct corneal refraction, induces changes in corneal thickness and curvature. Both factors can cause measurement errors when determining intraocular pressure (IOP). This study evaluates effects of photorefractive keratectomy (PRK) on IOP measurements, using Goldmann applanation tonometry (GAT) and Applanation resonance tonometry (ART), in an in vitro model. Six porcine eyes was enucleated and pressurised to a constant IOP=30 mmHg. After removal of the epithelium, the eyes were PRK-treated for a total of 25 dioptres. The measured IOP decreased 13.2 mmHg for GAT and 9.0 mmHg for ART. The total underestimation by GAT was larger than for ART, and a part of the ART underestimation (3.5 mmHg) was assigned to sensitivity to the change in corneal surface structure resulting from the removal of epithelium. The flat contact probe of GAT, as compared with the convex tip of ART, provided explanation for the difference in IOP measurement error after PRK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.